
M A N N I N G

Craig Walls
FOREWORD BY Andrew Glover

IN ACTION

Spring Boot in Action

CRAIG WALLS

M A N N I N G
Shelter Island

Licensed to Thomas Snead <n.ordickan@gmail.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Technical development editor: Robert Casazza
PO Box 761 Copyeditor: Andy Carroll
Shelter Island, NY 11964 Proofreader: Corbin Collins

Technical proofreader: John Guthrie
Typesetter: Gordan Salinovic

Cover designer: Marija Tudor

ISBN 9781617292545
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15

Licensed to Thomas Snead <n.ordickan@gmail.com>

www.manning.com

iii

contents
foreword vii
preface ix
about this book xii
acknowledgments xv

1 Bootstarting Spring 1
1.1 Spring rebooted 2

Taking a fresh look at Spring 2 ■ Examining Spring Boot
essentials 4 ■ What Spring Boot isn’t 7

1.2 Getting started with Spring Boot 8
Installing the Spring Boot CLI 8 ■ Initializing a Spring Boot
project with Spring Initializr 12

1.3 Summary 22

2 Developing your first Spring Boot application 23
2.1 Putting Spring Boot to work 24

Examining a newly initialized Spring Boot project 26 ■ Dissecting
a Spring Boot project build 30

2.2 Using starter dependencies 33
Specifying facet-based dependencies 34 ■ Overriding starter
transitive dependencies 35

Licensed to Thomas Snead <n.ordickan@gmail.com>

CONTENTSiv

2.3 Using automatic configuration 37
Focusing on application functionality 37 ■ Running the
application 43 ■ What just happened? 45

2.4 Summary 48

3 Customizing configuration 49
3.1 Overriding Spring Boot auto-configuration 50

Securing the application 50 ■ Creating a custom security
configuration 51 ■ Taking another peek under the covers of
auto-configuration 55

3.2 Externalizing configuration with properties 57
Fine-tuning auto-configuration 58 ■ Externally configuring
application beans 64 ■ Configuring with profiles 69

3.3 Customizing application error pages 71

3.4 Summary 74

4 Testing with Spring Boot 76
4.1 Integration testing auto-configuration 77

4.2 Testing web applications 79
Mocking Spring MVC 80 ■ Testing web security 83

4.3 Testing a running application 86
Starting the server on a random port 87 ■ Testing HTML pages
with Selenium 88

4.4 Summary 90

5 Getting Groovy with the Spring Boot CLI 92
5.1 Developing a Spring Boot CLI application 93

Setting up the CLI project 93 ■ Eliminating code noise with
Groovy 94 ■ What just happened? 98

5.2 Grabbing dependencies 100
Overriding default dependency versions 101 ■ Adding dependency
repositories 102

5.3 Running tests with the CLI 102

5.4 Creating a deployable artifact 105

5.5 Summary 106

Licensed to Thomas Snead <n.ordickan@gmail.com>

CONTENTS v

6 ApplyingGrails in Spring Boot 107
6.1 Using GORM for data persistence 108

6.2 Defining views with Groovy Server Pages 113

6.3 Mixing Spring Boot with Grails 3 115
Creating a new Grails project 116 ■ Defining the domain 118
Writing a Grails controller 119 ■ Creating the view 120

6.4 Summary 123

7 Taking a peek inside with the Actuator 124
7.1 Exploring the Actuator’s endpoints 125

Viewing configuration details 126 ■ Tapping runtime metrics 133
Shutting down the application 139 ■ Fetching application
information 140

7.2 Connecting to the Actuator remote shell 141
Viewing the autoconfig report 142 ■ Listing application beans 143
Watching application metrics 144 ■ Invoking Actuator endpoints 145

7.3 Monitoring your application with JMX 146

7.4 Customizing the Actuator 148
Changing endpoint IDs 148 ■ Enabling and disabling endpoints 149
Adding custom metrics and gauges 149 ■ Creating a custom trace
repository 153 ■ Plugging in custom health indicators 155

7.5 Securing Actuator endpoints 156

7.6 Summary 159

8 Deploying Spring Boot applications 160
8.1 Weighing deployment options 161

8.2 Deploying to an application server 162
Building a WAR file 162 ■ Creating a production profile 164
Enabling database migration 168

8.3 Pushing to the cloud 173
Deploying to Cloud Foundry 173 ■ Deploying to Heroku 177

8.4 Summary 180

appendix A Spring Boot Developer Tools 181
appendix B Spring Boot starters 188
appendix C Configuration properties 195
appendix D Spring Boot dependencies 232

index 243

Licensed to Thomas Snead <n.ordickan@gmail.com>

Licensed to Thomas Snead <n.ordickan@gmail.com>

vii

foreword
In the spring of 2014, the Delivery Engineering team at Netflix set out to achieve a
lofty goal: enable end-to-end global continuous delivery via a software platform that
facilitates both extensibility and resiliency. My team had previously built two different
applications attempting to address Netflix’s delivery and deployment needs, but both
were beginning to show the telltale signs of monolith-ness and neither met the goals
of flexibility and resiliency. What’s more, the most stymieing effect of these monolithic
applications was ultimately that we were unable to keep pace with our partner’s inno-
vation. Users had begun to move around our tools rather than with them.

 It became apparent that if we wanted to provide real value to the company and rap-
idly innovate, we needed to break up the monoliths into small, independent services
that could be released at will. Embracing a microservice architecture gave us hope that
we could also address the twin goals of flexibility and resiliency. But we needed to do it
on a credible foundation where we could count on real concurrency, legitimate moni-
toring, reliable and easy service discovery, and great runtime performance.

 With the JVM as our bedrock, we looked for a framework that would give us rapid
velocity and steadfast operationalization out of the box. We zeroed in on Spring Boot.

 Spring Boot makes it effortless to create Spring-powered, production-ready ser-
vices without a lot of code! Indeed, the fact that a simple Spring Boot Hello World
application can fit into a tweet is a radical departure from what the same functionality
required on the JVM only a few short years ago. Out-of-the-box nonfunctional features
like security, metrics, health-checks, embedded servers, and externalized configura-
tion made Boot an easy choice for us.

Licensed to Thomas Snead <n.ordickan@gmail.com>

FOREWORDviii

 Yet, when we embarked on our Spring Boot journey, solid documentation was hard
to come by. Relying on source code isn’t the most joyful manner of figuring out how
to properly leverage a framework’s features.

 It’s not surprising to see the author of Manning’s venerable Spring in Action take on
the challenge of concisely distilling the core aspects of working with Spring Boot into
another cogent book. Nor is it surprising that Craig and the Manning crew have done
another tremendously wonderful job! Spring Boot in Action is an easily readable book,
as we’ve now come to expect from Craig and Manning.

 From chapter 1’s attention-getting introduction to Boot and the now legend-
ary 90ish-character tweetable Boot application to an in-depth analysis of Boot’s Actuator
in chapter 7, which enables a host of auto-magical operational features required for any
production application, Spring Boot in Action leaves no stone unturned. Indeed, for me,
chapter 7’s deep dive into the Actuator answered some of the lingering questions I’ve
had in the back of my head since picking up Boot well over a year ago. Chapter 8’s thor-
ough examination of deployment options opened my eyes to the simplicity of Cloud
Foundry for cloud deployments. One of my favorite chapters is chapter 4, where Craig
explores the many powerful options for easily testing a Boot application. From the get-
go, I was pleasantly surprised with some of Spring’s testing features, and Boot takes
advantage of them nicely.

 As I’ve publicly stated before, Spring Boot is just the kind of framework the Java
community has been seeking for over a decade. Its easy-to-use development features
and out-of-the-box operationalization make Java development fun again. I’m pleased
to report that Spring and Spring Boot are the foundation of Netflix’s new continuous
delivery platform. What’s more, other teams at Netflix are following the same path
because they too see the myriad benefits of Boot.

 It’s with equal parts excitement and passion that I absolutely endorse Craig’s book
as the easy-to-digest and fun-to-read Spring Boot documentation the Java community
has been waiting for since Boot took the community by storm. Craig’s accessible writ-
ing style and sweeping analysis of Boot’s core features and functionality will surely
leave readers with a solid grasp of Boot (along with a joyful sense of awe for it).

 Keep up the great work Craig, Manning Publications, and all the brilliant develop-
ers who have made Spring Boot what it is today! Each one of you has ensured a bright
future for the JVM.

 ANDREW GLOVER

 MANAGER, DELIVERY ENGINEERING AT NETFLIX

Licensed to Thomas Snead <n.ordickan@gmail.com>

ix

preface
At the 1964 New York World’s Fair, Walt Disney introduced three groundbreaking
attractions: “it’s a small world,” “Great Moments with Mr. Lincoln,” and the “Carousel
of Progress.” All three of these attractions have since moved into Disneyland and Walt
Disney World, and you can still see them today.

 My favorite of these is the Carousel of Progress. Supposedly, it was one of Walt
Disney’s favorites too. It’s part ride and part stage show where the seating area
rotates around a center area featuring four stages. Each stage tells the story of
a family at different time periods of the 20th century—the early 1900s, the 1920s,
the 1940s, and recent times—highlighting the technology advances in that time
period. The story of innovation is told from a hand-cranked washing machine, to
electric lighting and radio, to automatic dishwashers and television, to computers
and voice-activated appliances.

 In every act, the father (who is also the narrator of the show) talks about the latest
inventions and says “It can’t get any better,” only to discover that, in fact, it does get
better in the next act as technology progresses.

 Although Spring doesn’t have quite as long a history as that displayed in the Car-
ousel of Progress, I feel the same way about Spring as “Progress Dad” felt about the
20th century. Each and every Spring application seems to make the lives of developers
so much better. Just looking at how Spring components are declared and wired
together, we can see the following progression over the history of Spring:

Licensed to Thomas Snead <n.ordickan@gmail.com>

PREFACEx

■ When Spring 1.0 hit the scene, it completely changed how we develop enter-
prise Java applications. Spring dependency injection and declarative transac-
tions meant no more tight coupling of components and no more heavyweight
EJBs. It couldn’t get any better.

■ With Spring 2.0 we could use custom XML namespaces for configuration, mak-
ing Spring itself even easier to use with smaller and easier to understand config-
uration files. It couldn’t get any better.

■ Spring 2.5 gave us a much more elegant annotation-oriented dependency-
injection model with the @Component and @Autowired annotations, as well as
an annotation-oriented Spring MVC programming model. No more explicit
declaration of application components, and no more subclassing one of sev-
eral base controller classes. It couldn’t get any better.

■ Then with Spring 3.0 we were given a new Java-based configuration alternative to
XML that was improved further in Spring 3.1 with a variety of @Enable-prefixed
annotations. For the first time, it become realistic to write a complete Spring
application with no XML configuration whatsoever. It couldn’t get any better.

■ Spring 4.0 unleashed support for conditional configuration, where runtime
decisions would determine which configuration would be used and which
would be ignored based on the application’s classpath, environment, and other
factors. We no longer needed to write scripts to make those decisions at build
time and pick which configuration should be included in the deployment. How
could it possibly get any better?

And then came Spring Boot. Even though with each release of Spring we thought it
couldn’t possibly get any better, Spring Boot proved that there’s still a lot of magic left
in Spring. In fact, I believe Spring Boot is the most significant and exciting thing to
happen in Java development in a long time.

 Building upon previous advances in the Spring Framework, Spring Boot enables
automatic configuration, making it possible for Spring to intelligently detect what
kind of application you’re building and automatically configure the components nec-
essary to support the application’s needs. There’s no need to write explicit configura-
tion for common configuration scenarios; Spring will take care of it for you.

 Spring Boot starter dependencies make it even easier to select which build-time
and runtime libraries to include in your application builds by aggregating commonly
needed dependencies. Spring Boot starters not only keep the dependencies section of
your build specifications shorter, they keep you from having to think too hard about
the specific libraries and versions you need.

 Spring Boot’s command-line interface offers a compelling option for developing
Spring applications in Groovy with minimal noise or ceremony common in Java appli-
cations. With the Spring Boot CLI, there’s no need for accessor methods, access modi-
fiers such as public or private, semicolons, or the return keyword. In many cases,
you can even eliminate import statements. And because you run the application as
scripts from the command line, you don’t need a build specification.

Licensed to Thomas Snead <n.ordickan@gmail.com>

PREFACE xi

 Spring Boot’s Actuator gives you insight into the inner workings of a running
application. You can see exactly what beans are in the Spring application context, how
Spring MVC controllers are mapped to paths, the configuration properties available to
your application, and much more.

 With all of these wonderful features enabled by Spring Boot, it certainly can’t get
any better!

 In this book, you’ll see how Spring Boot has indeed made Spring even better than
it was before. We’ll look at auto-configuration, Spring Boot starters, the Spring Boot
CLI, and the Actuator. And we’ll tinker with the latest version of Grails, which is based
on Spring Boot. By the time we’re done, you’ll probably be thinking that Spring
couldn’t get any better.

 If we’ve learned anything from Walt Disney’s Carousel of Progress, it’s that when
we think things can’t get any better, they inevitably do get better. Already, the advances
offered by Spring Boot are being leveraged to enable even greater advances. It’s hard
to imagine Spring getting any better than it is now, but it certainly will. With Spring,
there’s always a great big beautiful tomorrow.

Licensed to Thomas Snead <n.ordickan@gmail.com>

xii

about this book
Spring Boot aims to simplify Spring development. As such, Spring Boot’s reach
stretches to touch everything that Spring touches. It’d be impossible to write a book
that covers every single way that Spring Boot can be used, as doing so would involve cov-
ering every single technology that Spring itself supports. Instead, Spring Boot in Action
aims to distill Spring Boot into four main topics: auto-configuration, starter dependen-
cies, the command-line interface, and the Actuator. Along the way, we’ll touch on a few
Spring features as necessary, but the focus will be primarily on Spring Boot.

 Spring Boot in Action is for all Java developers. Although some background in Spring
could be considered a prerequisite, Spring Boot has a way of making Spring more
approachable even to those new to Spring. Nevertheless, because this book will be
focused on Spring Boot and will not dive deeply into Spring itself, you may find it
helpful to pair it with other Spring materials such as Spring in Action, Fourth Edition
(Manning, 2014).

Roadmap

Spring Boot in Action is divided into seven chapters:
■ In chapter 1 you’ll be given an overview of Spring Boot, including the essentials

of automatic configuration, starter dependencies, the command-line interface,
and the Actuator.

■ Chapter 2 takes a deeper dive into Spring Boot, focusing on automatic configu-
ration and starter dependencies. In this chapter, you’ll build a complete Spring
application using very little explicit configuration.

Licensed to Thomas Snead <n.ordickan@gmail.com>

ABOUT THIS BOOK xiii

■ Chapter 3 picks up where chapter 2 leaves off, showing how you can influence
automatic configuration by setting application properties or completely over-
riding automatic configuration when it doesn’t meet your needs.

■ In chapter 4 we’ll look at how to write automated integration tests for Spring
Boot applications.

■ In chapter 5 you’ll see how the Spring Boot CLI offers a compelling alternative
to conventional Java development by enabling you to write complete applica-
tions as a set of Groovy scripts that are run from the command line.

■ While we’re on the subject of Groovy, chapter 6 takes a look at Grails 3, the lat-
est version of the Grails framework, which is now based on Spring Boot.

■ In chapter 7 you’ll see how to leverage Spring Boot’s Actuator to dig inside of a
running application and see what makes it tick. You’ll see how to use Actuator
web endpoints as well as a remote shell and JMX MBeans to peek at the internals
of an application.

■ Chapter 8 wraps things up by discussing various options for deploying your
Spring Boot application, including traditional application server deployment
and cloud deployment.

Code conventions and downloads

There are many code examples throughout this book. These examples will always
appear in a fixed-width code font like this. Any class name, method name, or XML
fragment within the normal text of the book will appear in code font as well. Many of
Spring’s classes and packages have exceptionally long (but expressive) names.
Because of this, line-continuation markers (➥) may be included when necessary. Not
all code examples in this book will be complete. Often I only show a method or two
from a class to focus on a particular topic.

 Complete source code for the applications found in the book can be downloaded
from the publisher’s website at www.manning.com/books/spring-boot-in-action.

Author Online

The purchase of Spring Boot in Action includes free access to a private web forum run
by Manning Publications, where you can make comments about the book, ask techni-
cal questions, and receive help from the author and from other users. To access the
forum and subscribe to it, point your web browser to www.manning.com/books/
spring-boot-in-action. This page provides information on how to get on the forum
once you are registered, what kind of help is available, and the rules of conduct on
the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray!

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://www.manning.com/spring-boot-in-action
http://www.manning.com/spring-boot-in-action
www.manning.com/books/spring-boot-in-action

ABOUT THIS BOOKxiv

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the cover illustration

The figure on the cover of Spring Boot in Action is captioned “Habit of a Tartar in
Kasan,” which is the capital city of the Republic of Tatarstan in Russia. The illustration
is taken from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and
Modern (four volumes), London, published between 1757 and 1772. The title page
states that these are hand-colored copperplate engravings, heightened with gum ara-
bic. Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was
an English cartographer who was the leading map supplier of his day. He engraved
and printed maps for government and other official bodies and produced a wide
range of commercial maps and atlases, especially of North America. His work as a
mapmaker sparked an interest in local dress customs of the lands he surveyed and
mapped, which are brilliantly displayed in this collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenom-
ena in the late eighteenth century, and collections such as this one were popular,
introducing both the tourist as well as the armchair traveler to the inhabitants of
other countries. The diversity of the drawings in Jefferys’ volumes speaks vividly of the
uniqueness and individuality of the world’s nations some 200 years ago. Dress codes
have changed since then, and the diversity by region and country, so rich at the time,
has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life. Or a more varied and interesting intellectual
and technical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Jeffreys’ pictures.

Licensed to Thomas Snead <n.ordickan@gmail.com>

xv

acknowledgments
This book will show how Spring Boot can automatically deal with the behind-the-
scenes stuff that goes into an application, freeing you to focus on the tasks that make
your application unique. In many ways, this is analogous to what went into making this
book happen. There were so many other people taking care of making things happen
that I was free to focus on writing the content of the book. For taking care of the
behind-the-scenes work at Manning, I’d like to thank Cynthia Kane, Robert Casazza,
Andy Carroll, Corbin Collins, Kevin Sullivan, Mary Piergies, Janet Vail, Ozren Harlo-
vic, and Candace Gillhoolley.

 Writing tests help you know if your software is meeting its goals. Similarly, those
who reviewed Spring Boot in Action while it was still being written gave me the feedback
I needed to make sure that the book stayed on target. For this, my gratitude goes out
to Aykut Acikel, Bachir Chihani, Eric Kramer, Francesco Persico, Furkan Kamaci,
Gregor Zurowski, Mario Arias, Michael A. Angelo, Mykel Alvis, Norbert Kuchenmeis-
ter, Phil Whiles, Raphael Villela, Sam Kreter, Travis Nelson, Wilfredo R. Ronsini Jr.,
and William Fly. Special thanks to John Guthrie for a final technical review shortly
before the manuscript went into production. And extra special thanks to Andrew
Glover for contributing the foreword to my book.

 Of course, this book wouldn’t be possible or even necessary without the incredible
work done by the talented members of the Spring team. It’s amazing what you do, and
I’m so excited to be part of a team that’s changing how software is developed.

Licensed to Thomas Snead <n.ordickan@gmail.com>

ACKNOWLEDGMENTSxvi

 Many thanks to all of those involved in the No Fluff/Just Stuff tour, whether it be
my fellow presenters or those who show up to hear us talk. The conversations we’ve
had have in some small way contributed to how this book was formed.

 A book like this would not be possible without an alphabet to compose into words.
So, just as in my previous book, I’d like to take this opportunity to thank the Phoeni-
cians for the invention of the first alphabet.

 Last, but certainly not least...my love, devotion, and thanks go to my beautiful wife
Raymie and my awesome girls, Maisy and Madi. Once again, you’ve tolerated another
writing project. Now that it’s done, we should go to Disney World. Whatdya say?

Licensed to Thomas Snead <n.ordickan@gmail.com>

1

Bootstarting Spring

The Spring Framework has been around for over a decade and has found a place as
the de facto standard framework for developing Java applications. With such a long
and storied history, some might think that Spring has settled, resting on its laurels,
and is not doing anything new or exciting. Some might even say that Spring is leg-
acy and that it’s time to look elsewhere for innovation.

 Some would be wrong.
 There are many exciting new things taking place in the Spring ecosystem,

including work in the areas of cloud computing, big data, schema-less data persis-
tence, reactive programming, and client-side application development.

 Perhaps the most exciting, most head-turning, most game-changing new thing
to come to Spring in the past year or so is Spring Boot. Spring Boot offers a new
paradigm for developing Spring applications with minimal friction. With Spring
Boot, you’ll be able to develop Spring applications with more agility and be able to

This chapter covers
■ How Spring Boot simplifies Spring application

development
■ The essential features of Spring Boot
■ Setting up a Spring Boot workspace

Licensed to Thomas Snead <n.ordickan@gmail.com>

2 CHAPTER 1 Bootstarting Spring

focus on addressing your application’s functionality needs with minimal (or possibly
no) thought of configuring Spring itself. In fact, one of the main things that Spring
Boot does is to get Spring out of your way so you can get stuff done.

 Throughout the chapters in this book, we’ll explore various facets of Spring Boot
development. But first, let’s take a high-level look at what Spring Boot has to offer.

1.1 Spring rebooted
Spring started as a lightweight alternative to Java Enterprise Edition (JEE, or J2EE as it
was known at the time). Rather than develop components as heavyweight Enterprise
JavaBeans (EJBs), Spring offered a simpler approach to enterprise Java development,
utilizing dependency injection and aspect-oriented programming to achieve the capa-
bilities of EJB with plain old Java objects (POJOs).

 But while Spring was lightweight in terms of component code, it was heavyweight in
terms of configuration. Initially, Spring was configured with XML (and lots of it).
Spring 2.5 introduced annotation-based component-scanning, which eliminated a great
deal of explicit XML configuration for an application’s own components. And Spring 3.0
introduced a Java-based configuration as a type-safe and refactorable option to XML.

 Even so, there was no escape from configuration. Enabling certain Spring features
such as transaction management and Spring MVC required explicit configuration,
either in XML or Java. Enabling third-party library features such as Thymeleaf-based
web views required explicit configuration. Configuring servlets and filters (such as
Spring’s DispatcherServlet) required explicit configuration in web.xml or in a serv-
let initializer. Component-scanning reduced configuration and Java configuration
made it less awkward, but Spring still required a lot of configuration.

 All of that configuration represents development friction. Any time spent writing
configuration is time spent not writing application logic. The mental shift required to
think about configuring a Spring feature distracts from solving the business problem.
Like any framework, Spring does a lot for you, but it demands that you do a lot for it
in return.

 Moreover, project dependency management is a thankless task. Deciding what
libraries need to be part of the project build is tricky enough. But it’s even more chal-
lenging to know which versions of those libraries will play well with others.

 As important as it is, dependency management is another form of friction. When
you’re adding dependencies to your build, you’re not writing application code. Any
incompatibilities that come from selecting the wrong versions of those dependencies
can be a real productivity killer.

 Spring Boot has changed all of that.

1.1.1 Taking a fresh look at Spring

Suppose you’re given the task of developing a very simple Hello World web applica-
tion with Spring. What would you need to do? I can think of a handful of things you’d
need at a bare minimum:

Licensed to Thomas Snead <n.ordickan@gmail.com>

3Spring rebooted

■ A project structure, complete with a Maven or Gradle build file including
required dependencies. At the very least, you’ll need Spring MVC and the Serv-
let API expressed as dependencies.

■ A web.xml file (or a WebApplicationInitializer implementation) that declares
Spring’s DispatcherServlet.

■ A Spring configuration that enables Spring MVC.
■ A controller class that will respond to HTTP requests with “Hello World”.
■ A web application server, such as Tomcat, to deploy the application to.

What’s most striking about this list is that only one item is specific to developing the
Hello World functionality: the controller. The rest of it is generic boilerplate that
you’d need for any web application developed with Spring. But if all Spring web appli-
cations need it, why should you have to provide it?

 Suppose for a moment that the controller is all you need. As it turns out, the
Groovy-based controller class shown in listing 1.1 is a complete (even if simple) Spring
application.

@RestController
class HelloController {

@RequestMapping("/")
def hello() {
return "Hello World"

}

}

There’s no configuration. No web.xml. No build specification. Not even an applica-
tion server. This is the entire application. Spring Boot will handle the logistics of exe-
cuting the application. You only need to bring the application code.

 Assuming that you have Spring Boot’s command-line interface (CLI) installed, you
can run HelloController at the command line like this:

$ spring run HelloController.groovy

You may have also noticed that it wasn’t even necessary to compile the code. The
Spring Boot CLI was able to run it from its uncompiled form.

 I chose to write this example controller in Groovy because the simplicity of the
Groovy language presents well alongside the simplicity of Spring Boot. But Spring
Boot doesn’t require that you use Groovy. In fact, much of the code we’ll write in this
book will be in Java. But there’ll be some Groovy here and there, where appropriate.

 Feel free to look ahead to section 1.21 to see how to install the Spring Boot CLI, so
that you can try out this little web application. But for now, we’ll look at the key pieces
of Spring Boot to see how it changes Spring application development.

Listing 1.1 A complete Groovy-based Spring application

Licensed to Thomas Snead <n.ordickan@gmail.com>

4 CHAPTER 1 Bootstarting Spring

1.1.2 Examining Spring Boot essentials

Spring Boot brings a great deal of magic to Spring application development. But
there are four core tricks that it performs:

■ Automatic configuration—Spring Boot can automatically provide configuration
for application functionality common to many Spring applications.

■ Starter dependencies—You tell Spring Boot what kind of functionality you need,
and it will ensure that the libraries needed are added to the build.

■ The command-line interface—This optional feature of Spring Boot lets you write
complete applications with just application code, but no need for a traditional
project build.

■ The Actuator—Gives you insight into what’s going on inside of a running Spring
Boot application.

Each of these features serves to simplify Spring application development in its own
way. We’ll look at how to employ them to their fullest throughout this book. But for
now, let’s take a quick look at what each offers.

AUTO-CONFIGURATION

In any given Spring application’s source code, you’ll find either Java configuration or
XML configuration (or both) that enables certain supporting features and functionality
for the application. For example, if you’ve ever written an application that accesses a
relational database with JDBC, you’ve probably configured Spring’s JdbcTemplate as a
bean in the Spring application context. I’ll bet the configuration looked a lot like this:

@Bean
public JdbcTemplate jdbcTemplate(DataSource dataSource) {

return new JdbcTemplate(dataSource);
}

This very simple bean declaration creates an instance of JdbcTemplate, injecting it
with its one dependency, a DataSource. Of course, that means that you’ll also need to
configure a DataSource bean so that the dependency will be met. To complete this
configuration scenario, suppose that you were to configure an embedded H2 database
as the DataSource bean:

@Bean
public DataSource dataSource() {

return new EmbeddedDatabaseBuilder()
.setType(EmbeddedDatabaseType.H2)
.addScripts('schema.sql', 'data.sql')
.build();

}

This bean configuration method creates an embedded database, specifying two SQL
scripts to execute on the embedded database. The build() method returns a Data-
Source that references the embedded database.

Licensed to Thomas Snead <n.ordickan@gmail.com>

5Spring rebooted

 Neither of these two bean configuration methods is terribly complex or lengthy.
But they represent just a fraction of the configuration in a typical Spring application.
Moreover, there are countless Spring applications that will have these exact same
methods. Any application that needs an embedded database and a JdbcTemplate will
need those methods. In short, it’s boilerplate configuration.

 If it’s so common, then why should you have to write it?
 Spring Boot can automatically configure these common configuration scenarios. If

Spring Boot detects that you have the H2 database library in your application’s class-
path, it will automatically configure an embedded H2 database. If JdbcTemplate is in
the classpath, then it will also configure a JdbcTemplate bean for you. There’s no
need for you to worry about configuring those beans. They’ll be configured for you,
ready to inject into any of the beans you write.

 There’s a lot more to Spring Boot auto-configuration than embedded databases
and JdbcTemplate. There are several dozen ways that Spring Boot can take the bur-
den of configuration off your hands, including auto-configuration for the Java Persis-
tence API (JPA), Thymeleaf templates, security, and Spring MVC. We’ll dive into auto-
configuration starting in chapter 2.

STARTER DEPENDENCIES

It can be challenging to add dependencies to a project’s build. What library do you
need? What are its group and artifact? Which version do you need? Will that version
play well with other dependencies in the same project?

 Spring Boot offers help with project dependency management by way of starter
dependencies. Starter dependencies are really just special Maven (and Gradle) depen-
dencies that take advantage of transitive dependency resolution to aggregate com-
monly used libraries under a handful of feature-defined dependencies.

 For example, suppose that you’re going to build a REST API with Spring MVC that
works with JSON resource representations. Additionally, you want to apply declarative
validation per the JSR-303 specification and serve the application using an embedded
Tomcat server. To accomplish all of this, you’ll need (at minimum) the following eight
dependencies in your Maven or Gradle build:

■ org.springframework:spring-core
■ org.springframework:spring-web
■ org.springframework:spring-webmvc
■ com.fasterxml.jackson.core:jackson-databind
■ org.hibernate:hibernate-validator
■ org.apache.tomcat.embed:tomcat-embed-core
■ org.apache.tomcat.embed:tomcat-embed-el
■ org.apache.tomcat.embed:tomcat-embed-logging-juli

On the other hand, if you were to take advantage of Spring Boot starter dependen-
cies, you could simply add the Spring Boot “web” starter (org.springframework
.boot:spring-boot-starter-web) as a build dependency. This single dependency

Licensed to Thomas Snead <n.ordickan@gmail.com>

6 CHAPTER 1 Bootstarting Spring

will transitively pull in all of those other dependencies so you don’t have to ask for
them all.

 But there’s something more subtle about starter dependencies than simply reduc-
ing build dependency count. Notice that by adding the “web” starter to your build,
you’re specifying a type of functionality that your application needs. Your app is a web
application, so you add the “web” starter. Likewise, if your application will use JPA per-
sistence, then you can add the “jpa” starter. If it needs security, you can add the “secu-
rity” starter. In short, you no longer need to think about what libraries you’ll need to
support certain functionality; you simply ask for that functionality by way of the perti-
nent starter dependency.

 Also note that Spring Boot’s starter dependencies free you from worrying about
which versions of these libraries you need. The versions of the libraries that the start-
ers pull in have been tested together so that you can be confident that there will be no
incompatibilities between them.

 Along with auto-configuration, we’ll begin using starter dependencies right away,
starting in chapter 2.

THE COMMAND-LINE INTERFACE (CLI)

In addition to auto-configuration and starter dependencies, Spring Boot also offers an
intriguing new way to quickly write Spring applications. As you saw earlier in section 1.1,
the Spring Boot CLI makes it possible to write applications by doing more than writing
the application code.

 Spring Boot’s CLI leverages starter dependencies and auto-configuration to let you
focus on writing code. Not only that, did you notice that there are no import lines in list-
ing 1.1? How did the CLI know what packages RequestMapping and RestController
come from? For that matter, how did those classes end up in the classpath?

 The short answer is that the CLI detected that those types are being used, and it
knows which starter dependencies to add to the classpath to make it work. Once those
dependencies are in the classpath, a series of auto-configuration kicks in and ensures
that DispatcherServlet and Spring MVC are enabled so that the controller can
respond to HTTP requests.

 Spring Boot’s CLI is an optional piece of Spring Boot’s power. Although it provides
tremendous power and simplicity for Spring development, it also introduces a rather
unconventional development model. If this development model is too extreme for
your taste, then no problem. You can still take advantage of everything else that
Spring Boot has to offer even if you don’t use the CLI. But if you like what the CLI pro-
vides, you’ll definitely want to look at chapter 5 where we’ll dig deeper into Spring
Boot’s CLI.

THE ACTUATOR

The final piece of the Spring Boot puzzle is the Actuator. Where the other parts of
Spring Boot simplify Spring development, the Actuator instead offers the ability to
inspect the internals of your application at runtime. With the Actuator installed, you
can inspect the inner workings of your application, including details such as

Licensed to Thomas Snead <n.ordickan@gmail.com>

7Spring rebooted

■ What beans have been configured in the Spring application context
■ What decisions were made by Spring Boot’s auto-configuration
■ What environment variables, system properties, configuration properties, and

command-line arguments are available to your application
■ The current state of the threads in and supporting your application
■ A trace of recent HTTP requests handled by your application
■ Various metrics pertaining to memory usage, garbage collection, web requests,

and data source usage

The Actuator exposes this information in two ways: via web endpoints or via a shell
interface. In the latter case, you can actually open a secure shell (SSH) into your appli-
cation and issue commands to inspect your application as it runs.

 We’ll explore the Actuator’s capabilities in detail when we get to chapter 7.

1.1.3 What Spring Boot isn’t

Because of the amazing things Spring Boot does, there has been a lot of talk about
Spring Boot in the past year or so. Depending on what you’ve heard or read about
Spring Boot before reading this book, you may have a few misconceptions about
Spring Boot that should be cleared up before continuing.

 First, Spring Boot is not an application server. This misconception stems from the
fact that it’s possible to create web applications as self-executable JAR files that can be
run at the command line without deploying applications to a conventional Java appli-
cation server. Spring Boot accomplishes this by embedding a servlet container (Tom-
cat, Jetty, or Undertow) within the application. But it’s the embedded servlet
container that provides application server functionality, not Spring Boot itself.

 Similarly, Spring Boot doesn’t implement any enterprise Java specifications such as
JPA or JMS. It does support several enterprise Java specifications, but it does so by auto-
matically configuring beans in Spring that support those features. For instance,
Spring Boot doesn’t implement JPA, but it does support JPA by auto-configuring the
appropriate beans for a JPA implementation (such as Hibernate).

 Finally, Spring Boot doesn’t employ any form of code generation to accomplish its
magic. Instead, it leverages conditional configuration features from Spring 4, along
with transitive dependency resolution offered by Maven and Gradle, to automatically
configure beans in the Spring application context.

 In short, at its heart, Spring Boot is just Spring. Inside, Spring Boot is doing the
same kind of bean configuration in Spring that you might do on your own if Spring
Boot didn’t exist. Thankfully, because Spring Boot does exist, you’re freed from deal-
ing with explicit boilerplate configuration and are able to focus on the logic that
makes your application unique.

 By now you should have a general idea of what Spring Boot brings to the table. It’s
just about time for you to build your first application with Spring Boot. First things
first, though. Let’s see how you can take your first steps with Spring Boot.

Licensed to Thomas Snead <n.ordickan@gmail.com>

8 CHAPTER 1 Bootstarting Spring

1.2 Getting started with Spring Boot
Ultimately, a Spring Boot project is just a regular Spring project that happens to lever-
age Spring Boot starters and auto-configuration. Therefore, any technique or tool you
may already be familiar with for creating a Spring project from scratch will apply to a
Spring Boot project. There are, however, a few convenient options available for kick-
starting your project with Spring Boot.

 The quickest way to get started with Spring Boot is to install the Spring Boot CLI so
that you can start writing code, such as that in listing 1.1, that runs via the CLI.

1.2.1 Installing the Spring Boot CLI

As we discussed earlier, the Spring Boot CLI offers an interesting, albeit unconven-
tional, approach to developing Spring applications. We’ll dive into the specifics of
what the CLI offers in chapter 5. But for now let’s look at how to install the Spring
Boot CLI so that you can run the code we looked at in listing 1.1.

 There are several ways to install the Spring Boot CLI:

■ From a downloaded distribution
■ Using the Groovy Environment Manager
■ With OS X Homebrew
■ As a port using MacPorts

We’ll look at each installation option. In addition, we’ll also see how to install support
for Spring Boot CLI command completion, which comes in handy if you’re using the
CLI on BASH or zsh shells (sorry, Windows users). Let’s first look at how you can install
the Spring Boot CLI manually from a distribution.

MANUALLY INSTALLING THE SPRING BOOT CLI

Perhaps the most straightforward way to install the Spring Boot CLI is to download it,
unzip it, and add its bin directory to your path. You can download the distribution
archive from either of these locations:

■ http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/
1.3.0.RELEASE/spring-boot-cli-1.3.0.RELEASE-bin.zip

■ http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/
1.3.0.RELEASE/spring-boot-cli-1.3.0.RELEASE-bin.tar.gz

Once you’ve downloaded the distribution, unpack it somewhere in your filesystem.
Inside of the unpacked archive, you’ll find a bin directory that contains a spring.bat
script (for Windows) and a spring script for Unix. Add this bin directory to your sys-
tem path and you’re ready to use the Spring Boot CLI.

SYMBOLICALLY LINKING TO SPRING BOOT If you’re using the Spring Boot CLI on
a Unix machine, it may be helpful to create a symbolic link to the unpacked
archive and add the symbolic link to your path instead of the actual directory.
This will make it easy to upgrade to a newer version of Spring Boot later (or
even to flip between versions) by simply reassigning the symbolic link to the
directory of the new version.

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/1.3.0.RELEASE/spring-boot-cli-1.3.0.RELEASE-bin.zip
http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/1.3.0.RELEASE/spring-boot-cli-1.3.0.RELEASE-bin.tar.gz

9Getting started with Spring Boot

You can kick the tires a little on the installation by verifying the version of the CLI that
was installed:

$ spring --version

If everything is working, you’ll be shown the version of the Spring Boot CLI that was
installed.

 Even though this is the manual installation, it’s an easy option that doesn’t require
you to have anything additional installed. If you’re a Windows user, it’s also the only
choice available to you. But if you’re on a Unix machine and are looking for
something a little more automated, then maybe the Software Development Kit
Manager can help.

INSTALLING WITH THE SOFTWARE DEVELOPMENT KIT MANAGER

The Software Development Kit Manager (SDKMAN; formerly known as GVM) can be
used to install and manage multiple versions of Spring Boot CLI installations. In order
to use SDKMAN, you’ll need to get and install the SDKMAN tool from http://sdkman
.io. The easiest way to install SDKMAN is at the command line:

$ curl -s get.sdkman.io | bash

Follow the instructions given in the output to complete the SDKMAN installation. For
my machine, I had to perform the following command at the command line:

$ source "/Users/habuma/.sdkman/bin/sdkman-init.sh"

Note that this command will be different for different users. In my case, my home
directory is at /Users/habuma, so that’s the root of the shell script’s path. You’ll want
to adjust accordingly to fit your situation.

 Once SDKMAN is installed, you can install Spring Boot’s CLI like this:

$ sdk install springboot
$ spring --version

Assuming all goes well, you’ll be shown the current version of Spring Boot.
 If you want to upgrade to a newer version of Spring Boot CLI, you just need to

install it and start using it. To find out which versions of Spring Boot CLI are available,
use SDKMAN’s list command:

$ sdk list springboot

The list command shows all available versions, including which versions are installed
and which is currently in use. From this list you can choose to install a version and
then use it. For example, to install Spring Boot CLI version 1.3.0.RELEASE, you’d use
the install command, specifying the version:

$ sdk install springboot 1.3.0.RELEASE

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://sdkman.io
http://sdkman.io

10 CHAPTER 1 Bootstarting Spring

This will install the new version and ask if you’d like to make it the default version. If
you choose not to make it the default version or if you wish to switch to a different ver-
sion, you can use the use command:

$ sdk use springboot 1.3.0.RELEASE

If you’d like that version to be the default for all shells, use the default command:

$ sdk default springboot 1.3.0.RELEASE

The nice thing about using SDKMAN to manage your Spring Boot CLI installation is
that it allows you to easily switch between different versions of Spring Boot. This will
enable you to try out snapshot, milestone, and release candidate builds before they’re
formally released, but still switch back to a stable release for other work.

INSTALLING WITH HOMEBREW

If you’ll be developing on an OS X machine, you have the option of using Homebrew
to install the Spring Boot CLI. Homebrew is a package manager for OS X that is used
to install many different applications and tools. The easiest way to install Homebrew is
by running the installation Ruby script:

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
master/install)"

You can read more about Homebrew (and find other installation options) at http://
brew.sh.

 In order to install the Spring Boot CLI using Homebrew, you’ll need to “tap” Piv-
otal’s tap:1

$ brew tap pivotal/tap

Now that Homebrew is tapping Pivotal’s tap, you can install the Spring Boot CLI like this:

$ brew install springboot

Homebrew will install the Spring Boot CLI to /usr/local/bin, and it’s ready to go. You
can verify the installation by checking the version that was installed:

$ spring --version

It should respond by showing you the version of Spring Boot that was installed. You
can also try running the code in listing 1.1.

INSTALLING WITH MACPORTS

Another Spring Boot CLI installation option for OS X users is to use MacPorts, another
popular installer for Mac OS X. In order to use MacPorts to install the Spring Boot

1 Tapping is a way to add additional repositories to those that Homebrew works from. Pivotal, the company
behind Spring and Spring Boot, has made the Spring Boot CLI available through its tap.

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://brew.sh/
http://brew.sh/

11Getting started with Spring Boot

CLI, you must first install MacPorts, which itself requires that you have Xcode
installed. Furthermore, the steps for installing MacPorts vary depending on which ver-
sion of OS X you’re using. Therefore, I refer you to https://www.macports.org/
install.php for instructions on installing MacPorts.

 Once you have MacPorts installed, you can install the Spring Boot CLI at the com-
mand line like this:

$ sudo port install spring-boot-cli

MacPorts will install the Spring Boot CLI to /opt/local/share/java/spring-boot-cli
and put a symbolic link to the binary in /opt/local/bin, which should already be in
your system path from installing MacPorts. You can verify the installation by checking
the version that was installed:

$ spring --version

It should respond by showing you the version of Spring Boot that was installed. You
can also try running the code in listing 1.1.

ENABLING COMMAND-LINE COMPLETION

Spring Boot’s CLI offers a handful of commands for running, packaging, and testing
your CLI-based application. Moreover, each of those commands has several options. It
can be difficult to remember all that the CLI offers. Command-line completion can
help you recall how to use the Spring Boot CLI.

 If you’ve installed the Spring Boot CLI with Homebrew, you already have command-
line completion installed. But if you installed Spring Boot manually or with SDKMAN,
you’ll need to source the scripts or install the completion scripts manually. (Command-
line completion isn’t an option if you’ve installed the Spring Boot CLI via MacPorts.)

 The completion scripts are found in the Spring Boot CLI installation directory
under the shell-completion subdirectory. There are two different scripts, one for
BASH and one for zsh. To source the completion script for BASH, you can enter the
following at the command line (assuming a SDKMAN installation):

$. ~/.sdkman/springboot/current/shell-completion/bash/spring

This will give you Spring Boot CLI completion for the current shell, but you’ll have to
source this script again each time you start a new shell to keep that feature. Option-
ally, you can copy the script to your personal or system script directory. The location of
the script directory varies for different Unix installations, so consult your system docu-
mentation (or Google) for details.

 With command completion enabled, you should be able to type spring at the
command line and then hit the Tab key to be offered options for what to type next.
Once you’ve chosen a command, type -- (double-hyphen) and then hit Tab again to
be shown a list of options for that command.

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://www.macports.org/install.php
https://www.macports.org/install.php

12 CHAPTER 1 Bootstarting Spring

 If you’re developing on Windows or aren’t using BASH or zsh, you can’t use these
command-line completion scripts. Even so, you can get command completion if you
run the Spring Boot CLI shell:

$ spring shell

Unlike the command-completion scripts for BASH and zsh (which operate within the
BASH/zsh shell), the Spring Boot CLI shell opens a new Spring Boot–specific shell.
From this shell, you can execute any of the CLI’s commands and get command com-
pletion with the Tab key.

 The Spring Boot CLI offers an easy way to get started with Spring Boot and to
prototype simple applications. As we’ll discuss later in chapter 8, it can also be used
for production-ready applications, given the right production runtime environment.

 Even so, Spring Boot CLI’s process is rather unconventional in contrast to how most
Java projects are developed. Typically, Java projects use tools like Gradle or Maven to
build WAR files that are deployed to an application server. If the CLI model feels a little
uncomfortable, you can still take advantage of most of the features of Spring Boot in
the context of a traditionally built Java project.2 And the Spring Initializr can help you
get started.

1.2.2 Initializing a Spring Boot project with Spring Initializr

Sometimes the hardest part of a project is getting started. You need to set up a
directory structure for various project artifacts, create a build file, and populate the
build file with dependencies. The Spring Boot CLI removes much of this setup work,
but if you favor a more traditional Java project structure, you’ll want to look at the
Spring Initializr.

 The Spring Initializr is ultimately a web application that can generate a Spring
Boot project structure for you. It doesn’t generate any application code, but it will give
you a basic project structure and either a Maven or a Gradle build specification to
build your code with. All you need to do is write the application code.

 Spring Initializr can be used in several ways:

■ Through a web-based interface
■ Via Spring Tool Suite
■ Via IntelliJ IDEA
■ Using the Spring Boot CLI

We’ll look at how to use each of these interfaces to the Initializr, starting with the web-
based interface.

2 You’ll only be giving up features that require the flexibility of the Groovy language, such as automatic depen-
dency and import resolution.

Licensed to Thomas Snead <n.ordickan@gmail.com>

13Getting started with Spring Boot

USING SPRING INITIALIZR’S WEB INTERFACE

The most straightforward way to use the Spring Initializr is to point your web browser
to http://start.spring.io. You should see a form similar to the one in figure 1.1.

 The first two things that the form asks is whether you want to build your project
with Maven or Gradle and which version of Spring Boot to use. It defaults to a Maven
project using the latest release (non-milestone, non-snapshot) version of Spring Boot,
but you’re welcome to choose a different one.

 On the left side of the form, you’re asked to specify some project metadata. At min-
imum, you must provide the project’s group and artifact. But if you click the “Switch to
the full version” link, you can specify additional metadata such as version and base pack-
age name. This metadata is used to populate the generated Maven pom.xml file (or
Gradle build.gradle file).

Figure 1.1 Spring Initializr is a web application that generates empty Spring projects as starting points for devel-
opment.

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://start.spring.io

14 CHAPTER 1 Bootstarting Spring

On the right side of the form, you’re asked to specify project dependencies. The easi-
est way to do that is to type the name of a dependency in the text box. As you type, a
list of matching dependencies will appear. Select the one(s) you want and it will be
added to the project. If you don’t see what you’re looking for, click the “Switch to the
full version” link to get a complete list of available dependencies.

 If you’ve glanced at appendix B, then you’ll recognize that the dependencies
offered correspond to Spring Boot starter dependencies. In fact, by selecting any of
these dependencies, you’re telling the Initializr to add the starters as dependencies to
the project’s build file. (We’ll talk more about Spring Boot starters in chapter 2.)

 Once you’ve filled in the form and made your dependency selections, click the
Generate Project button to have Spring Initializr generate a project for you. The proj-
ect it generates will be presented to you as a zip file (whose name is determined by the
value in the Artifact field) that is downloaded by your browser. The contents of the zip
file will vary slightly, depending on the choices you made before clicking Generate
Project. In any event, the zip file will contain a bare-bones project to get you started
developing an application with Spring Boot.

 For example, suppose that you were to specify the following to Spring Initializr:

■ Artifact: myapp
■ Package Name: myapp
■ Type: Gradle Project
■ Dependencies: Web and JPA

After clicking Generate Project, you’d be given a zip file named myapp.zip. After
unzipping it, you’d have a project structure similar to what’s shown in figure 1.2.

Figure 1.2 Initializr-created projects provide a minimal foundation on
which to build Spring Boot applications.

Licensed to Thomas Snead <n.ordickan@gmail.com>

15Getting started with Spring Boot

As you can see, there’s very little code in this project. Aside from a couple of empty
directories, it also includes the following:

■ build.gradle—A Gradle build specification. Had you chosen a Maven project,
this would be replaced with pom.xml.

■ Application.java—A class with a main() method to bootstrap the application.
■ ApplicationTests.java—An empty JUnit test class instrumented to load a Spring

application context using Spring Boot auto-configuration.
■ application.properties—An empty properties file for you to add configuration

properties to as you see fit.

Even the empty directories have significance in a Spring Boot application. The static
directory is where you can put any static content (JavaScript, stylesheets, images, and
so on) to be served from the web application. And, as you’ll see later, you can put tem-
plates that render model data in the templates directory.

 You’ll probably import the Initializr-created project into your IDE of choice. But if
Spring Tool Suite is your IDE of choice, you can create the project directly in the IDE.
Let’s have a look at Spring Tool Suite’s support for creating Spring Boot projects.

CREATING SPRING BOOT PROJECTS IN SPRING TOOL SUITE

Spring Tool Suite3 has long been a fantastic IDE for developing Spring applications.
Since version 3.4.0 it has also been integrated with the Spring Initializr, making it a
great way to get started with Spring Boot.

 To create a new Spring Boot application in Spring Tool Suite, select the New >
Spring Starter Project menu item from the File menu. When you do, Spring Tool
Suite will present you with a dialog box similar to the one shown in figure 1.3.

 As you can see, this dialog box asks for the same information as the web-based
Spring Initializr. In fact, the data you provide here will be fed to Spring Initializr to
create a project zip file, just as with the web-based form.

 If you’d like to specify where in the filesystem to create the project or whether to
add it to a specific working set within the IDE, click the Next button. You’ll be pre-
sented with a second dialog box like the one shown in figure 1.4.

 The Location field specifies where the project will reside on the filesystem. If you
take advantage of Eclipse’s working sets to organize your projects, you can have the
project added to a specific working set by checking the Add Project to Working Sets
check box and selecting a working set.

 The Site Info section simply describes the URL that will be used to contact the Ini-
tializr. For the most part, you can ignore this section. If, however, you were to deploy your
own Initializr server (by cloning the code at https://github.com/spring-io/initializr),
you could plug in the base URL of your Initializr here.

3 Spring Tool Suite is a distribution of the Eclipse IDE that is outfitted with several features to aid with Spring
development. You can download Spring Tool Suite from http://spring.io/tools/sts.

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://spring.io/tools/sts
https://github.com/spring-io/initializr

16 CHAPTER 1 Bootstarting Spring

Figure 1.3 Spring
Tool Suite integrates
with Spring Initializr to
create and directly im-
port Spring Boot proj-
ects into the IDE.

Figure 1.4 The sec-
ond page of the Spring
Starter Project dialog
box offers you a
chance to specify
where the project is
created.

Licensed to Thomas Snead <n.ordickan@gmail.com>

17Getting started with Spring Boot

Clicking the Finish button kicks off the project generation and import process. It’s
important to understand that Spring Tool Suite’s Spring Starter Project dialog box
delegates to the Spring Initializr at http://start.spring.io to produce the project. You
must be connected to the internet in order for it to work.

 Once the project has been imported into your workspace, you’re ready to start
developing your application. As you develop the application, you’ll find that Spring
Tool Suite has a few more Spring Boot-specific tricks up its sleeves. For instance, you
can run your application with an embedded server by selecting Run As > Spring Boot
Application from the Run menu.

 It’s important to understand that Spring Tool Suite coordinates with the Initializr
via a REST API. Therefore, it will only work if it can connect to the Initializr. If your
development machine is offline or Initializr is blocked by a firewall, then using the
Spring Start Project wizard in Spring Tool Suite will not work.

CREATING SPRING BOOT PROJECTS IN INTELLIJ IDEA

IntelliJ IDEA is a very popular IDE and, as of IntelliJ IDEA 14.1, it now supports Spring
Boot!4

 To get started on a new Spring Boot application in IntelliJ IDEA, select New > Project
from the File menu. You’ll be presented with the first of a handful of screens (shown in
figure 1.5) that ask questions similar to those asked by the Initializr web application and
Spring Tool Suite.

4 You can get IntelliJ IDEA at https://www.jetbrains.com/idea/. IntelliJ IDEA is a commercial IDE, meaning
that you may have to pay for it. You can, however, download a trial of it, and it’s freely available for use on
open source projects.

Figure 1.5 The first screen in IntelliJ IDEA’s Spring Boot initialization wizard

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://start.spring.io
https://www.jetbrains.com/idea/

18 CHAPTER 1 Bootstarting Spring

On the initial screen, select Spring Initializr from the project choices on the left.
You’ll then be prompted to select a Project SDK (essentially, which Java SDK you want
to use for the project) and the location of the Initializr web service. Unless you’re run-
ning your own instance of the Initializr, you’ll probably just click the Next button here
without making any changes. That will take you to the screen shown in figure 1.6.

 The second screen in IntelliJ IDEA’s Spring Boot initialization wizard asks some
basic questions about the project, such as the project’s name, Maven group and arti-
fact, Java version, and whether you want to build it with Maven or Gradle. Once you’ve
described your project, clicking the Next button takes you to the third screen, shown
in figure 1.7.

Figure 1.6 Specifying project information in IntelliJ IDEA’s Spring Boot initialization wizard

Licensed to Thomas Snead <n.ordickan@gmail.com>

19Getting started with Spring Boot

Where the second screen asked you about general project information, the third
screen starts by asking you what kind of dependencies you’ll need in the project. As
before, the check boxes shown on this screen correspond to Spring Boot starter
dependencies. After you’ve made your selections, click Next to be taken to the final
screen in the wizard, shown in figure 1.8.

 This last screen simply wants you to name the project and tell IntelliJ IDEA where
to create it. When you’re ready, click the Finish button and you’ll have a bare-bones
Spring Boot project ready for you in the IDE.

Figure 1.7 Selecting project dependencies in IntelliJ IDEA’s Spring Boot initialization wizard

Licensed to Thomas Snead <n.ordickan@gmail.com>

20 CHAPTER 1 Bootstarting Spring

USING THE INITIALIZR FROM THE SPRING BOOT CLI

As you saw earlier, the Spring Boot CLI is a great way to develop Spring applications by
just writing code. However, the Spring Boot CLI also has a few commands that can
help you use the Initializr to kick-start development on a more traditional Java project.

 The Spring Boot CLI includes an init command that acts as a client interface to
the Initializr. The simplest use of the init command is to create a baseline Spring
Boot project:

$ spring init

After contacting the Initializr web application, the init command will conclude by
downloading a demo.zip file. If you unzip this project, you’ll find a typical project

Figure 1.8 The final screen in IntelliJ IDEA’s Spring Boot initialization wizard

Licensed to Thomas Snead <n.ordickan@gmail.com>

21Getting started with Spring Boot

structure with a Maven pom.xml build specification. The Maven build specification is
minimal, with only baseline starter dependencies for Spring Boot and testing. You’ll
probably want a little more than that.

 Let’s say you want to start out by building a web application that uses JPA for data
persistence and that’s secured with Spring Security. You can specify those initial
dependencies with either --dependencies or -d:

$ spring init -dweb,jpa,security

This will give you a demo.zip containing the same project structure as before, but with
Spring Boot’s web, JPA, and security starters expressed as dependencies in pom.xml.
Note that it’s important to not type a space between -d and the dependencies. Failing
to do so will result in the ZIP file being downloaded with the name web,jpa,security.

 Now let’s say that you’d rather build this project with Gradle. No problem. Just
specify Gradle as the build type with the --build parameter:

$ spring init -dweb,jpa,security --build gradle

By default, the build specification for both Maven and Gradle builds will produce an
executable JAR file. If you’d rather produce a WAR file, you can specify so with the
--packaging or -p parameter:

$ spring init -dweb,jpa,security --build gradle -p war

So far, the ways we’ve used the init command have resulted in a zip file being down-
loaded. If you’d like for the CLI to crack open that zip file for you, you can specify a
directory for the project to be extracted to:

$ spring init -dweb,jpa,security --build gradle -p war myapp

The last parameter given here indicates that you want the project to be extracted to
the myapp directory.

 Optionally, if you want the CLI to extract the generated project into the current
directory, you can use either the --extract or the -x parameter:

$ spring init -dweb,jpa,security --build gradle -p jar -x

The init command has several other parameters, including parameters for building a
Groovy-based project, specifying the Java version to compile with, and selecting a ver-
sion of Spring Boot to build against. You can discover all of the parameters by using
the help command:

$ spring help init

You can also find out what choices are available for those parameters by using the
--list or -l parameter with the init command:

$ spring init -l

Licensed to Thomas Snead <n.ordickan@gmail.com>

22 CHAPTER 1 Bootstarting Spring

You’ll notice that although spring init -l lists several parameters that are supported
by the Initializr, not all of those parameters are directly supported by the Spring Boot
CLI’s init command. For instance, you can’t specify the root package name when ini-
tializing a project with the CLI; it will default to “demo”. spring help init can help
you discover what parameters are supported by the CLI’s init command.

 Whether you use Initializr’s web-based interface, create your projects from Spring
Tool Suite, or use the Spring Boot CLI to initialize a project, projects created using the
Spring Boot Initializr have a familiar project layout, not unlike other Java projects you
may have developed before.

1.3 Summary
Spring Boot is an exciting new way to develop Spring applications with minimal fric-
tion from the framework itself. Auto-configuration eliminates much of the boilerplate
configuration that infests traditional Spring applications. Spring Boot starters enable
you to specify build dependencies by what they offer rather than use explicit library
names and version. The Spring Boot CLI takes Spring Boot’s frictionless development
model to a whole new level by enabling quick and easy development with Groovy from
the command line. And the Actuator lets you look inside your running application to
see what and how Spring Boot has done.

 This chapter has given you a quick overview of what Spring Boot has to offer.
You’re probably itching to get started on writing a real application with Spring Boot.
That’s exactly what we’ll do in the next chapter. With all that Spring Boot does for
you, the hardest part will be turning this page to chapter 2.

Licensed to Thomas Snead <n.ordickan@gmail.com>

23

Developing your first
 Spring Boot application

When’s the last time you went to a supermarket or major retail store and actually
had to push the door open? Most large stores have automatic doors that sense your
presence and open for you. Any door will enable you to enter a building, but auto-
matic doors don’t require that you push or pull them open.

 Similarly, many public facilities have restrooms with automatic water faucets
and towel dispensers. Although not quite as prevalent as automatic supermarket
doors, these devices don’t ask much of you and instead are happy to dispense
water and towels.

 And I honestly don’t remember the last time I even saw an ice tray, much less filled
it with water or cracked it to get ice for a glass of water. My refrigerator/freezer some-
how magically always has ice for me and is at the ready to fill a glass for me.

 I bet you can think of countless ways that modern life is automated with
devices that work for you, not the other way around. With all of this automation

This chapter covers
■ Working with Spring Boot starters
■ Automatic Spring configuration

Licensed to Thomas Snead <n.ordickan@gmail.com>

24 CHAPTER 2 Developing your first Spring Boot application

everywhere, you’d think that we’d see more of it in our development tasks. Strangely,
that hasn’t been so.

 Up until recently, creating an application with Spring required you to do a lot of work
for the framework. Sure, Spring has long had fantastic features for developing amazing
applications. But it was up to you to add all of the library dependencies to the project’s
build specification. And it was your job to write configuration to tell Spring what to do.

 In this chapter, we’re going to look at two ways that Spring Boot has added a level
of automation to Spring development: starter dependencies and automatic configura-
tion. You’ll see how these essential Spring Boot features free you from the tedium and
distraction of enabling Spring in your projects and let you focus on actually develop-
ing your applications. Along the way, you’ll write a small but complete Spring applica-
tion that puts Spring Boot to work for you.

2.1 Putting Spring Boot to work
The fact that you’re reading this tells me that you are a reader. Maybe you’re quite the
bookworm, reading everything you can. Or maybe you only read on an as-needed
basis, perhaps picking up this book only because you need to know how to develop
applications with Spring.

 Whatever the case may be, you’re a reader. And readers tend to maintain a reading
list of books that they want (or need) to read. Even if it’s not a physical list, you proba-
bly have a mental list of things you’d like to read.1

 Throughout this book, we’re going to build a simple reading-list application. With
it, users can enter information about books they want to read, view the list, and
remove books once they’ve been read. We’ll use Spring Boot to help us develop it
quickly and with as little ceremony as possible.

 To start, we’ll need to initialize the project. In chapter 1, we looked at a handful of
ways to use the Spring Initializr to kickstart Spring Boot development. Any of those
choices will work fine here, so pick the one that suits you best and get ready to put
Spring Boot to work.

 From a technical standpoint, we’re going to use Spring MVC to handle web
requests, Thymeleaf to define web views, and Spring Data JPA to persist the reading
selections to a database. For now, that database will be an embedded H2 database.
Although Groovy is an option, we’ll write the application code in Java for now. And
we’ll use Gradle as our build tool of choice.

 If you’re using the Initializr, either via its web application or through Spring Tool
Suite or IntelliJ IDEA, you’ll want to be sure to select the check boxes for Web, Thyme-
leaf, and JPA. And also remember to check the H2 check box so that you’ll have an
embedded database to use while developing the application.

 As for the project metadata, you’re welcome to choose whatever you like. For the
purposes of the reading list example, however, I created the project with the informa-
tion shown in figure 2.1.

1 If you’re not a reader, feel free to apply this to movies to watch, restaurants to try, or whatever suits you.

Licensed to Thomas Snead <n.ordickan@gmail.com>

25Putting Spring Boot to work

If you’re using Spring Tool Suite or IntelliJ IDEA to create the project, adapt the
details in figure 2.1 for your IDE of choice.

 On the other hand, if you’re using the Spring Boot CLI to initialize the applica-
tion, you can enter the following at the command line:

$ spring init -dweb,data-jpa,h2,thymeleaf --build gradle readinglist

Remember that the CLI’s init command doesn’t let you specify the project’s root pack-
age or the project name. The package name will default to “demo” and the project name

Figure 2.1 Initializing the reading list app via Initializr’s web interface

Licensed to Thomas Snead <n.ordickan@gmail.com>

26 CHAPTER 2 Developing your first Spring Boot application

will default to “Demo”. After the project has been created, you’ll probably want to open
it up and rename the “demo” package to “readinglist” and rename “DemoApplication
.java” to “ReadingListApplication.java”.

 Once the project has been created, you should have a project structure similar to
that shown in figure 2.2.
This is essentially the same project structure as what the Initializr gave you in chap-
ter 1. But now that you’re going to actually develop an application, let’s slow down
and take a closer look at what’s contained in the initial project.

2.1.1 Examining a newly initialized Spring Boot project

The first thing to notice in figure 2.2 is that the project structure follows the layout of
a typical Maven or Gradle project. That is, the main application code is placed in the
src/main/java branch of the directory tree, resources are placed in the src/main/
resources branch, and test code is placed in the src/test/java branch. At this point we
don’t have any test resources, but if we did we’d put them in src/test/resources.

 Digging deeper, you’ll see a handful of files sprinkled about the project:

■ build.gradle—The Gradle build specification
■ ReadingListApplication.java—The application’s bootstrap class and primary

Spring configuration class
■ application.properties—A place to configure application and Spring Boot

properties
■ ReadingListApplicationTests.java—A basic integration test class

There’s a lot of Spring Boot goodness to uncover in the build specification, so I’ll save
inspection of it until last. Instead, we’ll start with ReadingListApplication.java.

BOOTSTRAPPING SPRING

The ReadingListApplication class serves two purposes in a Spring Boot applica-
tion: configuration and bootstrapping. First, it’s the central Spring configuration
class. Even though Spring Boot auto-configuration eliminates the need for a lot of

Figure 2.2 The structure
of the initialized reading-
list project

Licensed to Thomas Snead <n.ordickan@gmail.com>

27Putting Spring Boot to work

Spring configuration, you’ll need at least a small amount of Spring configuration to
enable auto-configuration. As you can see in listing 2.1, there’s only one line of con-
figuration code.

package readinglist;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class ReadingListApplication {

public static void main(String[] args) {
SpringApplication.run(ReadingListApplication.class, args);

}

}

The @SpringBootApplication enables Spring component-scanning and Spring Boot
auto-configuration. In fact, @SpringBootApplication combines three other useful
annotations:

■ Spring’s @Configuration—Designates a class as a configuration class using
Spring’s Java-based configuration. Although we won’t be writing a lot of config-
uration in this book, we’ll favor Java-based configuration over XML configura-
tion when we do.

■ Spring’s @ComponentScan—Enables component-scanning so that the web con-
troller classes and other components you write will be automatically discovered
and registered as beans in the Spring application context. A little later in this
chapter, we’ll write a simple Spring MVC controller that will be annotated with
@Controller so that component-scanning can find it.

■ Spring Boot’s @EnableAutoConfiguration—This humble little annotation might
as well be named @Abracadabra because it’s the one line of configuration that
enables the magic of Spring Boot auto-configuration. This one line keeps you
from having to write the pages of configuration that would be required otherwise.

In older versions of Spring Boot, you’d have annotated the ReadingListApplication
class with all three of these annotations. But since Spring Boot 1.2.0, @SpringBoot-
Application is all you need.

 As I said, ReadingListApplication is also a bootstrap class. There are several ways
to run Spring Boot applications, including traditional WAR file deployment. But for
now the main() method here will enable you to run your application as an executable
JAR file from the command line. It passes a reference to the ReadingListApplication
class to SpringApplication.run(), along with the command-line arguments, to kick
off the application.

Listing 2.1 ReadingListApplication.java is both a bootstrap class and a configuration class

Enable component-scanning
and auto-configuration

Bootstrap the
application

Licensed to Thomas Snead <n.ordickan@gmail.com>

28 CHAPTER 2 Developing your first Spring Boot application

 In fact, even though you haven’t written any application code, you can still build
the application at this point and try it out. The easiest way to build and run the appli-
cation is to use the bootRun task with Gradle:

$ gradle bootRun

The bootRun task comes from Spring Boot’s Gradle plugin, which we’ll discuss more
in section 2.12. Alternatively, you can build the project with Gradle and run it with
java at the command line:

$ gradle build
...
$ java -jar build/libs/readinglist-0.0.1-SNAPSHOT.jar

The application should start up fine and enable a Tomcat server listening on port 8080.
You can point your browser at http://localhost:8080 if you want, but because you
haven’t written a controller class yet, you’ll be met with an HTTP 404 (Not Found) error
and an error page. Before this chapter is finished, though, that URL will serve your
reading-list application.

 You’ll almost never need to change ReadingListApplication.java. If your
application requires any additional Spring configuration beyond what Spring Boot
auto-configuration provides, it’s usually best to write it into separate @Configuration-
configured classes. (They’ll be picked up and used by component-scanning.) In
exceptionally simple cases, though, you could add custom configuration to
ReadingListApplication.java.

TESTING SPRING BOOT APPLICATIONS

The Initializr also gave you a skeleton test class to help you get started with writing
tests for your application. But ReadingListApplicationTests (listing 2.2) is more
than just a placeholder for tests—it also serves as an example of how to write tests for
Spring Boot applications.

package readinglist;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.boot.test.SpringApplicationConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;
import org.springframework.test.context.web.WebAppConfiguration;

import readinglist.ReadingListApplication;

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(

classes = ReadingListApplication.class)
@WebAppConfiguration

Listing 2.2 @SpringApplicationConfiguration loads a Spring application context

Load context via
Spring Boot

Licensed to Thomas Snead <n.ordickan@gmail.com>

29Putting Spring Boot to work

public class ReadingListApplicationTests {

@Test
public void contextLoads() {
}

}

In a typical Spring integration test, you’d annotate the test class with @Context-
Configuration to specify how the test should load the Spring application context. But
in order to take full advantage of Spring Boot magic, the @SpringApplication-
Configuration annotation should be used instead. As you can see from listing 2.2,
ReadingListApplicationTests is annotated with @SpringApplicationConfiguration
to load the Spring application context from the ReadingListApplication configura-
tion class.

 ReadingListApplicationTests also includes one simple test method, context-
Loads(). It’s so simple, in fact, that it’s an empty method. But it’s sufficient for the
purpose of verifying that the application context loads without any problems. If the
configuration defined in ReadingListApplication is good, the test will pass. If there
are any problems, the test will fail.

 Of course, you’ll add some of your own tests as we flesh out the application. But
the contextLoads() method is a fine start and verifies every bit of functionality pro-
vided by the application at this point. We’ll look more at how to test Spring Boot appli-
cations in chapter 4.

CONFIGURING APPLICATION PROPERTIES

The application.properties file given to you by the Initializr is initially empty. In fact,
this file is completely optional, so you could remove it completely without impacting
the application. But there’s also no harm in leaving it in place.

 We’ll definitely find opportunity to add entries to application.properties later. For
now, however, if you want to poke around with application.properties, try adding the
following line:

server.port=8000

With this line, you’re configuring the embedded Tomcat server to listen on port 8000
instead of the default port 8080. You can confirm this by running the application again.

 This demonstrates that the application.properties file comes in handy for fine-
grained configuration of the stuff that Spring Boot automatically configures. But you
can also use it to specify properties used by application code. We’ll look at several
examples of both uses of application.properties in chapter 3.

 The main thing to notice is that at no point do you explicitly ask Spring Boot to
load application.properties for you. By virtue of the fact that application.properties
exists, it will be loaded and its properties made available for configuring both Spring
and application code.

Test that the
context loads

Licensed to Thomas Snead <n.ordickan@gmail.com>

30 CHAPTER 2 Developing your first Spring Boot application

 We’re almost finished reviewing the contents of the initialized project. But we have
one last artifact to look at. Let’s see how a Spring Boot application is built.

2.1.2 Dissecting a Spring Boot project build

For the most part, a Spring Boot application isn’t much different from any Spring
application, which isn’t much different from any Java application. Therefore, building
a Spring Boot application is much like building any Java application. You have your
choice of Gradle or Maven as the build tool, and you express build specifics much the
same as you would in an application that doesn’t employ Spring Boot. But there are a
few small details about working with Spring Boot that benefit from a little extra help
in the build.

 Spring Boot provides build plugins for both Gradle and Maven to assist in building
Spring Boot projects. Listing 2.3 shows the build.gradle file created by Initializr, which
applies the Spring Boot Gradle plugin.

buildscript {
ext {
springBootVersion = `1.3.0.RELEASE`

}
repositories {
mavenCentral()

}
dependencies {
classpath("org.springframework.boot:spring-boot-gradle-plugin:

➥ ${springBootVersion}")
}

}

apply plugin: 'java'
apply plugin: 'eclipse'
apply plugin: 'idea'
apply plugin: 'spring-boot'

jar {
baseName = 'readinglist'
version = '0.0.1-SNAPSHOT'

}
sourceCompatibility = 1.7
targetCompatibility = 1.7

repositories {
mavenCentral()

}

dependencies {
compile("org.springframework.boot:spring-boot-starter-web")
compile("org.springframework.boot:spring-boot-starter-data-jpa")

Listing 2.3 Using the Spring Boot Gradle plugin

Depend
on Spring
Boot plugin

Apply Spring
Boot plugin

Starter
dependencies

Licensed to Thomas Snead <n.ordickan@gmail.com>

31Putting Spring Boot to work

compile("org.springframework.boot:spring-boot-starter-thymeleaf")
runtime("com.h2database:h2")
testCompile("org.springframework.boot:spring-boot-starter-test")

}

eclipse {
classpath {
containers.remove('org.eclipse.jdt.launching.JRE_CONTAINER')
containers 'org.eclipse.jdt.launching.JRE_CONTAINER/org.eclipse.jdt.internal.

➥ debug.ui.launcher.StandardVMType/JavaSE-1.7'
}

}

task wrapper(type: Wrapper) {
gradleVersion = '1.12'

}

On the other hand, had you chosen to build your project with Maven, the Initializr
would have given you a pom.xml file that employs Spring Boot’s Maven plugin, as
shown in listing 2.4.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>com.manning</groupId>
<artifactId>readinglist</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>jar</packaging>

<name>ReadingList</name>
<description>Reading List Demo</description>

<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>{springBootVersion}</version>
<relativePath/> <!-- lookup parent from repository -->

</parent>

<dependencies>
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>

</dependency>
<dependency>

<groupId>org.springframework.boot</groupId>

Listing 2.4 Using the Spring Boot Maven plugin and parent starter

Inherit versions
from starter parent

Starter
dependencies

Licensed to Thomas Snead <n.ordickan@gmail.com>

32 CHAPTER 2 Developing your first Spring Boot application

<artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-thymeleaf</artifactId>

</dependency>
<dependency>

<groupId>com.h2database</groupId>
<artifactId>h2</artifactId>

</dependency>
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>

</dependency>
</dependencies>

<properties>
<project.build.sourceEncoding>

UTF-8
</project.build.sourceEncoding>
<start-class>readinglist.Application</start-class>
<java.version>1.7</java.version>

</properties>

<build>
<plugins>

<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>

</plugin>
</plugins>

</build>

</project>

Whether you choose Gradle or Maven, Spring Boot’s build plugins contribute to the
build in two ways. First, you’ve already seen how you can use the bootRun task to run
the application with Gradle. Similarly, the Spring Boot Maven plugin provides a
spring-boot:run goal that achieves the same thing if you’re using a Maven build.

 The main feature of the build plugins is that they’re able to package the project as
an executable uber-JAR. This includes packing all of the application’s dependencies
within the JAR and adding a manifest to the JAR with entries that make it possible to
run the application with java -jar.

 In addition to the build plugins, notice that the Maven build in listing 2.4 has
“spring-boot-starter-parent” as a parent. By rooting the project in the parent starter, the
build can take advantage of Maven dependency management to inherit dependency
versions for several commonly used libraries so that you don’t have to explicitly specify
the versions when declaring dependencies. Notice that none of the <dependency>
entries in this pom.xml file specify any versions.

Apply Spring
Boot plugin

Licensed to Thomas Snead <n.ordickan@gmail.com>

33Using starter dependencies

 Unfortunately, Gradle doesn’t provide the same kind of dependency management
as Maven. That’s why the Spring Boot Gradle plugin offers a third feature; it simulates
dependency management for several common Spring and Spring-related dependen-
cies. Consequently, the build.gradle file in listing 2.3 doesn’t specify any versions for
any of its dependencies.

 Speaking of those dependencies, there are only five dependencies expressed in either
build specification. And, with the exception of the H2 dependency you added manually,
they all have artifact IDs that are curiously prefixed with “spring-boot-starter-”. These are
Spring Boot starter dependencies, and they offer a bit of build-time magic for Spring Boot
applications. Let’s see what benefit they provide.

2.2 Using starter dependencies
To understand the benefit of Spring Boot starter dependencies, let’s pretend for a
moment that they don’t exist. What kind of dependencies would you add to your
build without Spring Boot? Which Spring dependencies do you need to support
Spring MVC? Do you remember the group and artifact IDs for Thymeleaf? Which ver-
sion of Spring Data JPA should you use? Are all of these compatible?

 Uh-oh. Without Spring Boot starter dependencies, you’ve got some homework to
do. All you want to do is develop a Spring web application with Thymeleaf views that
persists its data via JPA. But before you can even write your first line of code, you have
to go figure out what needs to be put into the build specification to support your plan.

 After much consideration (and probably a lot of copy and paste from some other
application’s build that has similar dependencies) you arrive at the following depen-
dencies block in your Gradle build specification:

compile("org.springframework:spring-web:4.1.6.RELEASE")
compile("org.thymeleaf:thymeleaf-spring4:2.1.4.RELEASE")
compile("org.springframework.data:spring-data-jpa:1.8.0.RELEASE")
compile("org.hibernate:hibernate-entitymanager:jar:4.3.8.Final")
compile("com.h2database:h2:1.4.187")

This dependency list is fine and might even work. But how do you know? What kind of
assurance do you have that the versions you chose for those dependencies are even
compatible with each other? They might be, but you won’t know until you build the
application and run it. And how do you know that the list of dependencies is complete?
With not a single line of code having been written, you’re still a long way from kicking
the tires on your build.

 Let’s take a step back and recall what it is we want to do. We’re looking to build an
application with these traits:

■ It’s a web application
■ It uses Thymeleaf
■ It persists data to a relational database via Spring Data JPA

Licensed to Thomas Snead <n.ordickan@gmail.com>

34 CHAPTER 2 Developing your first Spring Boot application

Wouldn’t it be simpler if we could just specify those facts in the build and let the build
sort out what we need? That’s exactly what Spring Boot starter dependencies do.

2.2.1 Specifying facet-based dependencies

Spring Boot addresses project dependency complexity by providing several dozen
“starter” dependencies. A starter dependency is essentially a Maven POM that defines
transitive dependencies on other libraries that together provide support for some
functionality. Many of these starter dependencies are named to indicate the facet or
kind of functionality they provide.

 For example, the reading-list application is going to be a web application. Rather
than add several individually chosen library dependencies to the project build, it’s
much easier to simply declare that this is a web application. You can do that by adding
Spring Boot’s web starter to the build.

 We also want to use Thymeleaf for web views and persist data with JPA. Therefore,
we need the Thymeleaf and Spring Data JPA starter dependencies in the build.

 For testing purposes, we also want libraries that will enable us to run integration
tests in the context of Spring Boot. Therefore, we also want a test-time dependency on
Spring Boot’s test starter.

 Taken altogether, we have the following five dependencies that the Initializr pro-
vided in the Gradle build:

dependencies {
compile "org.springframework.boot:spring-boot-starter-web"
compile "org.springframework.boot:spring-boot-starter-thymeleaf"
compile "org.springframework.boot:spring-boot-starter-data-jpa"
compile "com.h2database:h2"
testCompile("org.springframework.boot:spring-boot-starter-test")

}

As you saw earlier, the easiest way to get these dependencies into your application’s
build is to select the Web, Thymeleaf, and JPA check boxes in the Initializr. But if you
didn’t do that when initializing the project, you can certainly go back and add them
later by editing the generated build.gradle or pom.xml.

 Via transitive dependencies, adding these four dependencies is the equivalent of
adding several dozen individual libraries to the build. Some of those transitive depen-
dencies include such things as Spring MVC, Spring Data JPA, Thymeleaf, as well as any
transitive dependencies that those dependencies declare.

 The most important thing to notice about the four starter dependencies is that they
were only as specific as they needed to be. We didn’t say that we wanted Spring MVC; we
simply said we wanted to build a web application. We didn’t specify JUnit or any other
testing tools; we just said we wanted to test our code. The Thymeleaf and Spring Data
JPA starters are a bit more specific, but only because there’s no less-specific way to
declare that you want Thymeleaf and Spring Data JPA.

Licensed to Thomas Snead <n.ordickan@gmail.com>

35Using starter dependencies

 The four starters in this build are only a few of the many starter dependencies that
Spring Boot offers. Appendix B lists all of the starters with some detail on what each
one transitively brings to a project build.

 In no case did we need to specify the version. The versions of the starter depen-
dencies themselves are determined by the version of Spring Boot you’re using. The
starter dependencies themselves determine the versions of the various transitive
dependencies that they pull in.

 Not knowing what versions of the various libraries are used may be a little unset-
tling to you. Be encouraged to know that Spring Boot has been tested to ensure that
all of the dependencies pulled in are compatible with each other. It’s actually very lib-
erating to just specify a starter dependency and not have to worry about which librar-
ies and which versions of those libraries you need to maintain.

 But if you really must know what it is that you’re getting, you can always get that
from the build tool. In the case of Gradle, the dependencies task will give you a
dependency tree that includes every library your project is using and their versions:

$ gradle dependencies

You can get a similar dependency tree from a Maven build with the tree goal of the
dependency plugin:

$ mvn dependency:tree

For the most part, you should never concern yourself with the specifics of what each
Spring Boot starter dependency provides. Generally, it’s enough to know that the web
starter enables you to build a web application, the Thymeleaf starter enables you to
use Thymeleaf templates, and the Spring Data JPA starter enables data persistence to a
database using Spring Data JPA.

 But what if, in spite of the testing performed by the Spring Boot team, there’s a
problem with a starter dependency’s choice of libraries? How can you override the
starter?

2.2.2 Overriding starter transitive dependencies

Ultimately, starter dependencies are just dependencies like any other dependency in
your build. That means you can use the facilities of the build tool to selectively over-
ride transitive dependency versions, exclude transitive dependencies, and certainly
specify dependencies for libraries not covered by Spring Boot starters.

 For example, consider Spring Boot’s web starter. Among other things, the web
starter transitively depends on the Jackson JSON library. This library is handy if you’re
building a REST service that consumes or produces JSON resource representations.
But if you’re using Spring Boot to build a more traditional human-facing web applica-
tion, you may not need Jackson. Even though it shouldn’t hurt anything to include it,
you can trim the fat off of your build by excluding Jackson as a transitive dependency.

Licensed to Thomas Snead <n.ordickan@gmail.com>

36 CHAPTER 2 Developing your first Spring Boot application

 If you’re using Gradle, you can exclude transitive dependencies like this:

compile("org.springframework.boot:spring-boot-starter-web") {
exclude group: 'com.fasterxml.jackson.core'

}

In Maven, you can exclude transitive dependencies with the <exclusions> element.
The following <dependency> for the Spring Boot web starter has <exclusions> to
keep Jackson out of the build:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
<exclusions>
<exclusion>

<groupId>com.fasterxml.jackson.core</groupId>
</exclusion>

</exclusions>
</dependency>

On the other hand, maybe having Jackson in the build is fine, but you want to build
against a different version of Jackson than what the web starter references. Suppose that
the web starter references Jackson version 2.3.4, but you’d rather user version 2.4.3.2

Using Maven, you can express the desired dependency directly in your project’s
pom.xml file like this:

<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>2.4.3</version>

</dependency>

Maven always favors the closest dependency, meaning that because you’ve expressed
this dependency in your project’s build, it will be favored over the one that’s transi-
tively referred to by another dependency.

 Similarly, if you’re building with Gradle, you can specify the newer version of Jack-
son in your build.gradle file like this:

compile("com.fasterxml.jackson.core:jackson-databind:2.4.3")

This dependency works in Gradle because it’s newer than the version transitively
referred to by Spring Boot’s web starter. But suppose that instead of using a newer
version of Jackson, you’d like to use an older version. Unlike Maven, Gradle favors the
newest version of a dependency. Therefore, if you want to use an older version of

2 The versions mentioned here are for illustration purposes only. The actual version of Jackson referenced by
Spring Boot’s web starter will be determined by which version of Spring Boot you are using.

Licensed to Thomas Snead <n.ordickan@gmail.com>

37Using automatic configuration

Jackson, you’ll have to express the older version as a dependency in your build and
exclude it from being transitively resolved by the web starter dependency:

compile("org.springframework.boot:spring-boot-starter-web") {
exclude group: 'com.fasterxml.jackson.core'

}
compile("com.fasterxml.jackson.core:jackson-databind:2.3.1")

In any case, take caution when overriding the dependencies that are pulled in transi-
tively by Spring Boot starter dependencies. Although different versions may work
fine, there’s a great amount of comfort that can be taken knowing that the versions
chosen by the starters have been tested to play well together. You should only over-
ride these transitive dependencies under special circumstances (such as a bug fix in
a newer version).

 Now that we have an empty project structure and build specification ready, it’s
time to start developing the application itself. As we do, we’ll let Spring Boot handle
the configuration details while we focus on writing the code that provides the reading-
list functionality.

2.3 Using automatic configuration
In a nutshell, Spring Boot auto-configuration is a runtime (more accurately, applica-
tion startup-time) process that considers several factors to decide what Spring configu-
ration should and should not be applied. To illustrate, here are a few examples of the
kinds of things that Spring Boot auto-configuration might consider:

■ Is Spring’s JdbcTemplate available on the classpath? If so and if there is a Data-
Source bean, then auto-configure a JdbcTemplate bean.

■ Is Thymeleaf on the classpath? If so, then configure a Thymeleaf template
resolver, view resolver, and template engine.

■ Is Spring Security on the classpath? If so, then configure a very basic web secu-
rity setup.

There are nearly 200 such decisions that Spring Boot makes with regard to auto-
configuration every time an application starts up, covering such areas as security,
integration, persistence, and web development. All of this auto-configuration serves to
keep you from having to explicitly write configuration unless absolutely necessary.

 The funny thing about auto-configuration is that it’s difficult to show in the pages
of this book. If there’s no configuration to write, then what is there to point to and
discuss?

2.3.1 Focusing on application functionality

One way to gain an appreciation of Spring Boot auto-configuration would be for me
to spend the next several pages showing you the configuration that’s required in the
absence of Spring Boot. But there are already several great books on Spring that show

Licensed to Thomas Snead <n.ordickan@gmail.com>

38 CHAPTER 2 Developing your first Spring Boot application

you that, and showing it again wouldn’t help us get the reading-list application written
any quicker.

 Instead of wasting time talking about Spring configuration, knowing that Spring
Boot is going to take care of that for us, let’s see how taking advantage of Spring Boot
auto-configuration keeps us focused on writing application code. I can think of no
better way to do that than to start writing the application code for the reading-list
application.

DEFINING THE DOMAIN

The central domain concept in our application is a book that’s on a reader’s reading
list. Therefore, we’ll need to define an entity class that represents a book. Listing 2.5
shows how the Book type is defined.

package readinglist;

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

@Entity
public class Book {

@Id
@GeneratedValue(strategy=GenerationType.AUTO)
private Long id;
private String reader;
private String isbn;
private String title;
private String author;
private String description;

public Long getId() {
return id;

}

public void setId(Long id) {
this.id = id;

}

public String getReader() {
return reader;

}

public void setReader(String reader) {
this.reader = reader;

}

public String getIsbn() {
return isbn;

Listing 2.5 The Book class represents a book in the reading list

Licensed to Thomas Snead <n.ordickan@gmail.com>

39Using automatic configuration

}

public void setIsbn(String isbn) {
this.isbn = isbn;

}

public String getTitle() {
return title;

}

public void setTitle(String title) {
this.title = title;

}

public String getAuthor() {
return author;

}

public void setAuthor(String author) {
this.author = author;

}

public String getDescription() {
return description;

}

public void setDescription(String description) {
this.description = description;

}

}

As you can see, the Book class is a simple Java object with a handful of properties
describing a book and the necessary accessor methods. It’s annotated with @Entity
designating it as a JPA entity. The id property is annotated with @Id and @Generated-
Value to indicate that this field is the entity’s identity and that its value will be auto-
matically provided.

DEFINING THE REPOSITORY INTERFACE

Next up, we need to define the repository through which the ReadingList objects will
be persisted to the database. Because we’re using Spring Data JPA, that task is a simple
matter of creating an interface that extends Spring Data JPA’s JpaRepository interface:

package readinglist;

import java.util.List;
import org.springframework.data.jpa.repository.JpaRepository;

public interface ReadingListRepository extends JpaRepository<Book, Long> {

List<Book> findByReader(String reader);

}

Licensed to Thomas Snead <n.ordickan@gmail.com>

40 CHAPTER 2 Developing your first Spring Boot application

By extending JpaRepository, ReadingListRepository inherits 18 methods for per-
forming common persistence operations. The JpaRepository interface is parameter-
ized with two parameters: the domain type that the repository will work with, and the
type of its ID property. In addition, I’ve added a findByReader() method through
which a reading list can be looked up given a reader’s username.

 If you’re wondering about who will implement ReadingListRepository and the 18
methods it inherits, don’t worry too much about it. Spring Data provides a special magic
of its own, making it possible to define a repository with just an interface. The interface
will be implemented automatically at runtime when the application is started.

CREATING THE WEB INTERFACE

Now that we have the application’s domain defined and a repository for persisting objects
from that domain to the database, all that’s left is to create the web front-end. A Spring
MVC controller like the one in listing 2.6 will handle HTTP requests for the application.

package readinglist;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;

import java.util.List;

@Controller
@RequestMapping("/")
public class ReadingListController {

private ReadingListRepository readingListRepository;

@Autowired
public ReadingListController(

ReadingListRepository readingListRepository) {
this.readingListRepository = readingListRepository;

}

@RequestMapping(value="/{reader}", method=RequestMethod.GET)
public String readersBooks(

@PathVariable("reader") String reader,
Model model) {

List<Book> readingList =
readingListRepository.findByReader(reader);

if (readingList != null) {
model.addAttribute("books", readingList);

}
return "readingList";

}

Listing 2.6 A Spring MVC controller that fronts the reading list application

Licensed to Thomas Snead <n.ordickan@gmail.com>

41Using automatic configuration

@RequestMapping(value="/{reader}", method=RequestMethod.POST)
public String addToReadingList(

@PathVariable("reader") String reader, Book book) {
book.setReader(reader);
readingListRepository.save(book);
return "redirect:/{reader}";

}

}

ReadingListController is annotated with @Controller in order to be picked up by
component-scanning and automatically be registered as a bean in the Spring applica-
tion context. It’s also annotated with @RequestMapping to map all of its handler meth-
ods to a base URL path of “/”.

 The controller has two methods:

■ readersBooks()—Handles HTTP GET requests for /{reader} by retrieving a
Book list from the repository (which was injected into the controller’s construc-
tor) for the reader specified in the path. It puts the list of Book into the model
under the key “books” and returns “readingList” as the logical name of the view
to render the model.

■ addToReadingList()—Handles HTTP POST requests for /{reader}, binding the
data in the body of the request to a Book object. This method sets the Book
object’s reader property to the reader’s name, and then saves the modified
Book via the repository’s save() method. Finally, it returns by specifying a redi-
rect to /{reader} (which will be handled by the other controller method).

The readersBooks() method concludes by returning “readingList” as the logical view
name. Therefore, we must also create that view. I decided at the outset of this project
that we’d be using Thymeleaf to define the application views, so the next step is to cre-
ate a file named readingList.html in src/main/resources/templates with the follow-
ing content.

<html>
<head>
<title>Reading List</title>
<link rel="stylesheet" th:href="@{/style.css}"></link>

</head>

<body>
<h2>Your Reading List</h2>
<div th:unless="${#lists.isEmpty(books)}">

<dl th:each="book : ${books}">
<dt class="bookHeadline">

Title by
Author
(ISBN: ISBN)

Listing 2.7 The Thymeleaf template that presents a reading list

Licensed to Thomas Snead <n.ordickan@gmail.com>

42 CHAPTER 2 Developing your first Spring Boot application

</dt>
<dd class="bookDescription">

<span th:if="${book.description}"
th:text="${book.description}">Description

No description available

</dd>
</dl>

</div>
<div th:if="${#lists.isEmpty(books)}">

<p>You have no books in your book list</p>
</div>

<hr/>

<h3>Add a book</h3>
<form method="POST">

<label for="title">Title:</label>
<input type="text" name="title" size="50"></input>

<label for="author">Author:</label>
<input type="text" name="author" size="50"></input>

<label for="isbn">ISBN:</label>
<input type="text" name="isbn" size="15"></input>

<label for="description">Description:</label>

<textarea name="description" cols="80" rows="5">
</textarea>

<input type="submit"></input>
</form>

</body>
</html>

This template defines an HTML page that is conceptually divided into two parts. At the
top of the page is a list of books that are in the reader’s reading list. At the bottom is a
form the reader can use to add a new book to the reading list.

 For aesthetic purposes, the Thymeleaf template references a stylesheet named
style.css. That file should be created in src/main/resources/static and look like this:

body {
background-color: #cccccc;
font-family: arial,helvetica,sans-serif;

}

.bookHeadline {
font-size: 12pt;
font-weight: bold;

}

.bookDescription {
font-size: 10pt;

}

label {
font-weight: bold;

}

Licensed to Thomas Snead <n.ordickan@gmail.com>

43Using automatic configuration

This stylesheet is simple and doesn’t go overboard to make the application look nice.
But it serves our purposes and, as you’ll soon see, serves to demonstrate a piece of
Spring Boot’s auto-configuration.

 Believe it or not, that’s a complete application. Every single line has been pre-
sented to you in this chapter. Take a moment, flip back through the previous pages,
and see if you can find any configuration. In fact, aside from the three lines of config-
uration in listing 2.1 (which essentially turn on auto-configuration), you didn’t have to
write any Spring configuration.

 Despite the lack of Spring configuration, this complete Spring application is ready
to run. Let’s fire it up and see how it looks.

2.3.2 Running the application

There are several ways to run a Spring Boot application. Earlier, in section 2.5, we dis-
cussed how to run the application via Maven and Gradle, as well as how to build and run
an executable JAR. Later, in chapter 8 you’ll also see how to build a WAR file that can be
deployed in a traditional manner to a Java web application server such as Tomcat.

 If you’re developing your application with Spring Tool Suite, you also have the
option of running the application within your IDE by selecting the project and choos-
ing Run As > Spring Boot App from the Run menu, as shown in figure 2.3.

Figure 2.3 Running a Spring Boot application from Spring Tool Suite

Licensed to Thomas Snead <n.ordickan@gmail.com>

44 CHAPTER 2 Developing your first Spring Boot application

Assuming everything works, your browser should show you an empty reading list along
with a form for adding a new book to the list. Figure 2.4 shows what it might look like.

 Now go ahead and use the form to add a few books to your reading list. After you
do, your list might look something like figure 2.5.

Figure 2.4 An initially empty reading list

Figure 2.5 The reading list after a few books have been added

Licensed to Thomas Snead <n.ordickan@gmail.com>

45Using automatic configuration

Feel free to take a moment to play around with the application. When you’re ready,
move on and we’ll see how Spring Boot made it possible to write an entire Spring
application with no Spring configuration code.

2.3.3 What just happened?

As I said, it’s hard to describe auto-configuration when there’s no configuration to
point at. So instead of spending time discussing what you don’t have to do, this section
has focused on what you do need to do—namely, write the application code.

 But certainly there is some configuration somewhere, right? Configuration is a
central element of the Spring Framework, and there must be something that tells
Spring how to run your application.

 When you add Spring Boot to your application, there’s a JAR file named spring-
boot-autoconfigure that contains several configuration classes. Every one of these con-
figuration classes is available on the application’s classpath and has the opportunity to
contribute to the configuration of your application. There’s configuration for Thyme-
leaf, configuration for Spring Data JPA, configuration for Spring MVC, and configura-
tion for dozens of other things you might or might not want to take advantage of in
your Spring application.

 What makes all of this configuration special, however, is that it leverages Spring’s
support for conditional configuration, which was introduced in Spring 4.0. Condi-
tional configuration allows for configuration to be available in an application, but to
be ignored unless certain conditions are met.

 It’s easy enough to write your own conditions in Spring. All you have to do is
implement the Condition interface and override its matches() method. For exam-
ple, the following simple condition class will only pass if JdbcTemplate is available
on the classpath:

package readinglist;
import org.springframework.context.annotation.Condition;
import org.springframework.context.annotation.ConditionContext;
import org.springframework.core.type.AnnotatedTypeMetadata;

public class JdbcTemplateCondition implements Condition {
@Override
public boolean matches(ConditionContext context,

AnnotatedTypeMetadata metadata) {
try {

context.getClassLoader().loadClass(
"org.springframework.jdbc.core.JdbcTemplate");

return true;
} catch (Exception e) {

return false;
}

}
}

Licensed to Thomas Snead <n.ordickan@gmail.com>

46 CHAPTER 2 Developing your first Spring Boot application

You can use this custom condition class when you declare beans in Java:

@Conditional(JdbcTemplateCondition.class)
public MyService myService() {

...
}

In this case, the MyService bean will only be created if the JdbcTemplateCondition
passes. That is to say that the MyService bean will only be created if JdbcTemplate is
available on the classpath. Otherwise, the bean declaration will be ignored.

 Although the condition shown here is rather simple, Spring Boot defines several
more interesting conditions and applies them to the configuration classes that make
up Spring Boot auto-configuration. Spring Boot applies conditional configuration by
defining several special conditional annotations and using them in its configuration
classes. Table 2.1 lists the conditional annotations that Spring Boot provides.

Generally, you shouldn’t ever need to look at the source code for Spring Boot’s auto-
configuration classes. But as an illustration of how the annotations in table 2.1 are
used, consider this excerpt from DataSourceAutoConfiguration (provided as part of
Spring Boot’s auto-configuration library):

@Configuration
@ConditionalOnClass({ DataSource.class, EmbeddedDatabaseType.class })
@EnableConfigurationProperties(DataSourceProperties.class)

Table 2.1 Conditional annotations used in auto-configuration

Conditional annotation Configuration applied if…?

@ConditionalOnBean …the specified bean has been configured

@ConditionalOnMissingBean …the specified bean has not already been configured

@ConditionalOnClass …the specified class is available on the classpath

@ConditionalOnMissingClass …the specified class is not available on the classpath

@ConditionalOnExpression …the given Spring Expression Language (SpEL) expres-
sion evaluates to true

@ConditionalOnJava …the version of Java matches a specific value or range
of versions

@ConditionalOnJndi …there is a JNDI InitialContext available and
optionally given JNDI locations exist

@ConditionalOnProperty …the specified configuration property has a specific value

@ConditionalOnResource …the specified resource is available on the classpath

@ConditionalOnWebApplication …the application is a web application

@ConditionalOnNotWebApplication …the application is not a web application

Licensed to Thomas Snead <n.ordickan@gmail.com>

47Using automatic configuration

@Import({ Registrar.class, DataSourcePoolMetadataProvidersConfiguration.class
})

public class DataSourceAutoConfiguration {

...

}

As you can see, DataSourceAutoConfiguration is a @Configuration-annotated class
that (among other things) imports some additional configuration from other configu-
ration classes and defines a few beans of its own. What’s most important to notice here
is that DataSourceAutoConfiguration is annotated with @ConditionalOnClass to
require that both DataSource and EmbeddedDatabaseType be available on the class-
path. If they aren’t available, then the condition fails and any configuration provided
by DataSourceAutoConfiguration will be ignored.

 Within DataSourceAutoConfiguration there’s a nested JdbcTemplateConfiguration
class that provides auto-configuration of a JdbcTemplate bean:

@Configuration
@Conditional(DataSourceAutoConfiguration.DataSourceAvailableCondition.class)
protected static class JdbcTemplateConfiguration {

@Autowired(required = false)
private DataSource dataSource;

@Bean
@ConditionalOnMissingBean(JdbcOperations.class)
public JdbcTemplate jdbcTemplate() {
return new JdbcTemplate(this.dataSource);

}

...

}

JdbcTemplateConfiguration is an annotation with the low-level @Conditional to
require that the DataSourceAvailableCondition pass—essentially requiring that a
DataSource bean be available or that one will be created by auto-configuration. Assum-
ing that a DataSource bean will be available, the @Bean-annotated jdbcTemplate()
method configures a JdbcTemplate bean. But jdbcTemplate() is annotated with
@ConditionalOnMissingBean so that the bean will be configured only if there is not
already a bean of type JdbcOperations (the interface that JdbcTemplate implements).

 There’s a lot more to DataSourceAutoConfiguration and to the other auto-
configuration classes provided by Spring Boot than is shown here. But this should
give you a taste of how Spring Boot leverages conditional configuration to imple-
ment auto-configuration.

 As it directly pertains to our example, the following configuration decisions are
made by the conditionals in auto-configuration:

Licensed to Thomas Snead <n.ordickan@gmail.com>

48 CHAPTER 2 Developing your first Spring Boot application

■ Because H2 is on the classpath, an embedded H2 database bean will be created.
This bean is of type javax.sql.DataSource, which the JPA implementation
(Hibernate) will need to access the database.

■ Because Hibernate Entity Manager is on the classpath (transitively via Spring
Data JPA), auto-configuration will configure beans needed to support working
with Hibernate, including Spring’s LocalContainerEntityManagerFactory-
Bean and JpaVendorAdapter.

■ Because Spring Data JPA is on the classpath, Spring Data JPA will be configured
to automatically create repository implementations from repository interfaces.

■ Because Thymeleaf is on the classpath, Thymeleaf will be configured as a view
option for Spring MVC, including a Thymeleaf template resolver, template
engine, and view resolver. The template resolver is configured to resolve tem-
plates from /templates relative to the root of the classpath.

■ Because Spring MVC is on the classpath (thanks to the web starter depen-
dency), Spring’s DispatcherServlet will be configured and Spring MVC will be
enabled.

■ Because this is a Spring MVC web application, a resource handler will be regis-
tered to serve static content from /static relative to the root of the classpath.
(The resource handler will also serve static content from /public, /resources,
and /META-INF/resources).

■ Because Tomcat is on the classpath (transitively referred to by the web starter
dependency), an embedded Tomcat container will be started to listen on port 8080.

The main takeaway here, though, is that Spring Boot auto-configuration takes on the
burden of configuring Spring so that you can focus on writing your application.

2.4 Summary
By taking advantage of Spring Boot starter dependencies and auto-configuration, you
can more quickly and easily develop Spring applications. Starter dependencies help you
focus on the type of functionality your application needs rather than on the specific
libraries and versions that provide that functionality. Meanwhile, auto-configuration
frees you from the boilerplate configuration that is common among Spring applications
without Spring Boot.

 Although auto-configuration is a convenient way to work with Spring, it also repre-
sents an opinionated approach to Spring development. What if you want or need to
configure Spring differently? In the next chapter, we’ll look at how you can override
Spring Boot auto-configuration as needed to achieve the goals of your application.
You’ll also see how to apply some of the same techniques to configure your own appli-
cation components.

Licensed to Thomas Snead <n.ordickan@gmail.com>

49

Customizing
 configuration

Freedom of choice is an awesome thing. If you’ve ever ordered a pizza (who
hasn’t?) then you know that you have full control over what toppings are placed on
the pie. If you ask for sausage, pepperoni, green peppers, and extra cheese, then
you’re essentially configuring the pizza to your precise specifications.

 On the other hand, most pizza places also offer a form of auto-configuration.
You can ask for the meat-lover’s pizza, the vegetarian pizza, the spicy Italian pizza,
or the ultimate example of pizza auto-configuration, the supreme pizza. When
ordering one of these pizzas, you don’t have to explicitly specify the toppings. The
type of pizza ordered implies what toppings are used.

 But what if you like all of the toppings of the supreme pizza, but also want jala-
penos and would rather not have mushrooms? Does your taste for spicy food and
aversion to fungus mean that auto-configuration isn’t applicable and that you must

This chapter covers
■ Overriding auto-configured beans
■ Configuring with external properties
■ Customizing error pages

Licensed to Thomas Snead <n.ordickan@gmail.com>

50 CHAPTER 3 Customizing configuration

explicitly configure your pizza? Absolutely not. Most pizzerias will let you customize
your pizza, even if you started with a preconfigured option from the menu.

 Working with traditional Spring configuration is much like ordering a pizza and
explicitly specifying all of the toppings. You have full control over what goes into your
Spring configuration, but explicitly declaring all of the beans in the application is
non-optimal. On the other hand, Spring Boot auto-configuration is like ordering a
specialty pizza from the menu. It’s easier to let Spring Boot handle the details than to
declare each and every bean in the application context.

 Fortunately, Spring Boot auto-configuration is flexible. Like the pizzeria that will
leave off the mushrooms and add jalapenos to your pizza, Spring Boot will let you step
in and influence how it applies auto-configuration.

 In this chapter, we’re going to look at two ways to influence auto-configuration:
explicit configuration overrides and fine-grained configuration with properties. We’ll
also look at how Spring Boot has provided hooks for you to plug in a custom error
page.

3.1 Overriding Spring Boot auto-configuration
Generally speaking, if you can get the same results with no configuration as you would
with explicit configuration, no configuration is the no-brainer choice. Why would you
do extra work, writing and maintaining extra configuration code, if you can get what
you need without it?

 Most of the time, the auto-configured beans are exactly what you want and there’s
no need to override them. But there are some cases where the best guess that Spring
Boot can make during auto-configuration probably isn’t going to be good enough.

 A prime example of a case where auto-configuration isn’t good enough is when
you’re applying security to your application. Security is not one-size-fits-all, and there
are decisions around application security that Spring Boot has no business making for
you. Although Spring Boot provides some basic auto-configuration for security, you’ll
certainly want to override it to meet your specific security requirements.

 To see how to override auto-configuration with explicit configuration, we’ll start by
adding Spring Security to the reading-list example. After seeing what you get for free
with auto-configuration, we’ll then override the basic security configuration to fit a
particular situation.

3.1.1 Securing the application

Spring Boot auto-configuration makes securing an application a piece of cake. All you
need to do is add the security starter to the build. For Gradle, the following depen-
dency will do:

compile("org.springframework.boot:spring-boot-starter-security")

Or, if you’re using Maven, add this <dependency> to your build’s <dependencies>
block:

Licensed to Thomas Snead <n.ordickan@gmail.com>

51Overriding Spring Boot auto-configuration

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-security</artifactId>

</dependency>

That’s it! Rebuild your application and run it. It’s now a secure web application! The
security starter adds Spring Security (among other things) to the application’s class-
path. With Spring Security on the classpath, auto-configuration kicks in and a very
basic Spring Security setup is created.

 If you try to open the application in your browser, you’ll be immediately met with an
HTTP Basic authentication dialog box. The username you’ll need to enter is “user”. As
for the password, it’s a bit trickier. The password is randomly generated and written to
the logs each time the application is run. You’ll need to look through the logging mes-
sages (written to stdout by default) and look for a line that looks something like this:

Using default security password: d9d8abe5-42b5-4f20-a32a-76ee3df658d9

I can’t say for certain, but I’m guessing that this particular security setup probably isn’t
ideal for you. First, HTTP Basic dialog boxes are clunky and not very user-friendly. And
I’ll bet that you don’t develop too many applications that have only one user who
doesn’t mind looking up their password from a log file. Therefore, you’ll probably
want to make a few changes to how Spring Security is configured. At very least, you’ll
want to provide a nice-looking login page and specify an authentication service that
operates against a database or LDAP-based user store.

 Let’s see how to do that by writing some explicit Spring Security configuration to
override the auto-configured security scheme.

3.1.2 Creating a custom security configuration

Overriding auto-configuration is a simple matter of explicitly writing the configura-
tion as if auto-configuration didn’t exist. This explicit configuration can take any form
that Spring supports, including XML configuration and Groovy-based configuration.

 For our purposes, we’re going to focus on Java configuration when writing explicit
configuration. In the case of Spring Security, this means writing a configuration class
that extends WebSecurityConfigurerAdapter. SecurityConfig in listing 3.1 is the
configuration class we’ll use.

package readinglist;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Configuration;
import org.springframework.security.config.annotation.authentication.

builders.AuthenticationManagerBuilder;
import org.springframework.security.config.annotation.web.builders.

HttpSecurity;

Listing 3.1 Explicit configuration to override auto-configured security

Licensed to Thomas Snead <n.ordickan@gmail.com>

52 CHAPTER 3 Customizing configuration

import org.springframework.security.config.annotation.web.configuration.
EnableWebSecurity;

import org.springframework.security.config.annotation.web.configuration.
WebSecurityConfigurerAdapter;

import org.springframework.security.core.userdetails.UserDetails;
import org.springframework.security.core.userdetails.UserDetailsService;
import org.springframework.security.core.userdetails.

UsernameNotFoundException;

@Configuration
@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {

@Autowired
private ReaderRepository readerRepository;

@Override
protected void configure(HttpSecurity http) throws Exception {
http

.authorizeRequests()
.antMatchers("/").access("hasRole('READER')")
.antMatchers("/**").permitAll()

.and()

.formLogin()
.loginPage("/login")
.failureUrl("/login?error=true");

}

@Override
protected void configure(

AuthenticationManagerBuilder auth) throws Exception {
auth

.userDetailsService(new UserDetailsService() {
@Override
public UserDetails loadUserByUsername(String username)

throws UsernameNotFoundException {
return readerRepository.findOne(username);

}
});

}

}

SecurityConfig is a very basic Spring Security configuration. Even so, it does a lot of
what we need to customize security of the reading-list application. By providing this
custom security configuration class, we’re asking Spring Boot to skip security auto-
configuration and to use our security configuration instead.

 Configuration classes that extend WebSecurityConfigurerAdapter can override
two different configure() methods. In SecurityConfig, the first configure()
method specifies that requests for “/” (which ReadingListController’s methods are
mapped to) require an authenticated user with the READER role. All other request

Require READER
access

Set login
form path

Define custom
UserDetailsService

Licensed to Thomas Snead <n.ordickan@gmail.com>

53Overriding Spring Boot auto-configuration

paths are configured for open access to all users. It also designates /login as the path
for the login page as well as the login failure page (along with an error attribute).

 Spring Security offers several options for authentication, including authentication
against JDBC-backed user stores, LDAP-backed user stores, and in-memory user stores.
For our application, we’re going to authenticate users against the database via JPA.
The second configure() method sets this up by setting a custom user details service.
This service can be any class that implements UsersDetailsService and is used to
look up user details given a username. The following listing has given it an anony-
mous inner-class implementation that simply calls the findOne() method on an
injected ReaderRepository (which is a Spring Data JPA repository interface).

package readinglist;
import org.springframework.data.jpa.repository.JpaRepository;

public interface ReaderRepository
extends JpaRepository<Reader, String> {

}

As with BookRepository, there’s no need to write an implementation of Reader-
Repository. Because it extends JpaRepository, Spring Data JPA will automatically
create an implementation of it at runtime. This affords you 18 methods for working
with Reader entities.

 Speaking of Reader entities, the Reader class (shown in listing 3.3) is the final
piece of the puzzle. It’s a simple JPA entity type with a few fields to capture the user-
name, password, and full name of the user.

package readinglist;
import java.util.Arrays;
import java.util.Collection;
import javax.persistence.Entity;
import javax.persistence.Id;
import org.springframework.security.core.GrantedAuthority;
import org.springframework.security.core.authority.SimpleGrantedAuthority;
import org.springframework.security.core.userdetails.UserDetails;

@Entity
public class Reader implements UserDetails {

private static final long serialVersionUID = 1L;

@Id
private String username;
private String fullname;
private String password;

Listing 3.2 A repository interface for persisting readers

Listing 3.3 A JPA entity that defines a Reader

Persist readers
via JPA

Reader fields

Licensed to Thomas Snead <n.ordickan@gmail.com>

54 CHAPTER 3 Customizing configuration

public String getUsername() {
return username;

}

public void setUsername(String username) {
this.username = username;

}

public String getFullname() {
return fullname;

}

public void setFullname(String fullname) {
this.fullname = fullname;

}

public String getPassword() {
return password;

}

public void setPassword(String password) {
this.password = password;

}

// UserDetails methods

@Override
public Collection<? extends GrantedAuthority> getAuthorities() {
return Arrays.asList(new SimpleGrantedAuthority("READER"));

}

@Override
public boolean isAccountNonExpired() {
return true;

}

@Override
public boolean isAccountNonLocked() {
return true;

}

@Override
public boolean isCredentialsNonExpired() {
return true;

}

@Override
public boolean isEnabled() {
return true;

}

}

As you can see, Reader is annotated with @Entity to make it a JPA entity. In addition,
its username field is annotated with @Id to designate it as the entity’s ID. This seemed
like a natural choice, as the username should uniquely identify the Reader.

Grant
READER
privilege

Do not expire,
lock, or disable

Licensed to Thomas Snead <n.ordickan@gmail.com>

55Overriding Spring Boot auto-configuration

 You’ll also notice that Reader implements the UserDetails interface and several of
its methods. This makes it possible to use a Reader object to represent a user in Spring
Security. The getAuthorities() method is overridden to always grant users READER
authority. The isAccountNonExpired(), isAccountNonLocked(), isCredentials-
NonExpired(), and isEnabled() methods are all implemented to return true so that
the reader account is never expired, locked, or revoked.

 Rebuild and restart the application and you should be able to log in to the applica-
tion as one of the readers.

KEEPING IT SIMPLE In a larger application, the authorities granted to a user
might themselves be entities and be maintained in a separate database table.
Likewise, the boolean values indicating whether an account is non-expired,
non-locked, and enabled might be fields drawn from the database. For our
purposes, however, I’ve decided to keep these details simple so as not to dis-
tract from what it is we’re really discussing … namely, overriding Spring Boot
auto-configuration.

There’s a lot more we could do with regard to security configuration,1 but this is all we
need here, and it does demonstrate how to override the security auto-configuration
provided by Spring Boot.

 Again, all you need to do to override Spring Boot auto-configuration is to write
explicit configuration. Spring Boot will see your configuration, step back, and let your
configuration take precedence. To understand how this works, let’s take a look under
the covers of Spring Boot auto-configuration to see how it works and how it allows
itself to be overridden.

3.1.3 Taking another peek under the covers of auto-configuration

As we discussed in section 2.3.3, Spring Boot auto-configuration comes with several
configuration classes, any of which can be applied in your application. All of this con-
figuration uses Spring 4.0’s conditional configuration support to make runtime deci-
sions as to whether or not Spring Boot’s configuration should be used or ignored.

 For the most part, the @ConditionalOnMissingBean annotation described in
table 2.1 is what makes it possible to override auto-configuration. The JdbcTemplate
bean defined in Spring Boot’s DataSourceAutoConfiguration is a very simple exam-
ple of how @ConditionalOnMissingBean works:

@Bean
@ConditionalOnMissingBean(JdbcOperations.class)
public JdbcTemplate jdbcTemplate() {

return new JdbcTemplate(this.dataSource);
}

1 For a deeper dive into Spring Security, have a look at chapters 9 and 14 of my Spring in Action, Fourth Edition
(Manning, 2014).

Licensed to Thomas Snead <n.ordickan@gmail.com>

56 CHAPTER 3 Customizing configuration

The jdbcTemplate() method is annotated with @Bean and is ready to configure a
JdbcTemplate bean if needed. But it’s also annotated with @ConditionalOnMissing-
Bean, which requires that there not already be a bean of type JdbcOperations (the
interface that JdbcTemplate implements). If there’s already a JdbcOperations bean,
then the condition will fail and the jdbcTemplate() bean method will not be used.

 What circumstances would result in there already being a JdbcOperation bean?
Spring Boot is designed to load application-level configuration before considering its
auto-configuration classes. Therefore, if you’ve already configured a JdbcTemplate
bean, then there will be a bean of type JdbcOperations by the time that auto-
configuration takes place, and the auto-configured JdbcTemplate bean will be ignored.

 As it pertains to Spring Security, there are several configuration classes considered
during auto-configuration. It would be impractical to go over each of them in detail
here, but the one that’s most significant in allowing us to override Spring Boot’s auto-
configured security configuration is SpringBootWebSecurityConfiguration. Here’s
an excerpt from that configuration class:

@Configuration
@EnableConfigurationProperties
@ConditionalOnClass({ EnableWebSecurity.class })
@ConditionalOnMissingBean(WebSecurityConfiguration.class)
@ConditionalOnWebApplication
public class SpringBootWebSecurityConfiguration {

...

}

As you can see, SpringBootWebSecurityConfiguration is annotated with a few
conditional annotations. Per the @ConditionalOnClass annotation, the @Enable-
WebSecurity annotation must be available on the classpath. And per
@ConditionalOnWebApplication, the application must be a web application. But it’s
the @ConditionalOnMissingBean annotation that makes it possible for our security
configuration class to be used instead of SpringBootWebSecurityConfiguration.

 The @ConditionalOnMissingBean requires that there not already be a bean of type
WebSecurityConfiguration. Although it may not be apparent on the surface, by anno-
tating our SecurityConfig class with @EnableWebSecurity, we’re indirectly creating a
bean of type WebSecurityConfiguration. Therefore, by the time auto-configuration
takes place, there will already be a bean of type WebSecurityConfiguration, the
@ConditionalOnMissingBean condition will fail, and any configuration offered by
SpringBootWebSecurityConfiguration will be skipped over.

 Although Spring Boot’s auto-configuration and @ConditionalOnMissingBean make
it possible for you to explicitly override any of the beans that would otherwise be auto-
configured, it’s not always necessary to go to that extreme. Let’s see how you can set a
few simple configuration properties to tweak the auto-configured components.

Licensed to Thomas Snead <n.ordickan@gmail.com>

57Externalizing configuration with properties

3.2 Externalizing configuration with properties
When dealing with application security, you’ll almost certainly want to take full charge
of the configuration. But it would be a shame to give up on auto-configuration just to
tweak a small detail such as a server port number or a logging level. If you need to set
a database URL, wouldn’t it be easier to set a property somewhere than to completely
declare a data source bean?

 As it turns out, the beans that are automatically configured by Spring Boot offer well
over 300 properties for fine-tuning. When you need to adjust the settings, you can spec-
ify these properties via environment variables, Java system properties, JNDI, command-
line arguments, or property files.

 To get started with these properties, let’s look at a very simple example. You may
have noticed that Spring Boot emits an ascii-art banner when you run the reading-list
application from the command line. If you’d like to disable the banner, you can do so
by setting a property named spring.main.show-banner to false. One way of doing
that is to specify the property as a command-line parameter when you run the app:

$ java -jar readinglist-0.0.1-SNAPSHOT.jar --spring.main.show-banner=false

Another way is to create a file named application.properties that includes the follow-
ing line:

spring.main.show-banner=false

Or, if you’d prefer, create a YAML file named application.yml that looks like this:

spring:
main:
show-banner: false

You could also set the property as an environment variable. For example, if you’re
using the bash or zsh shell, you can set it with the export command:

$ export spring_main_show_banner=false

Note the use of underscores instead of periods and dashes, as required for environ-
ment variable names.

 There are, in fact, several ways to set properties for a Spring Boot application. Spring
Boot will draw properties from several property sources, including the following:

1 Command-line arguments
2 JNDI attributes from java:comp/env
3 JVM system properties
4 Operating system environment variables
5 Randomly generated values for properties prefixed with random.* (referenced

when setting other properties, such as `${random.long})
6 An application.properties or application.yml file outside of the application

Licensed to Thomas Snead <n.ordickan@gmail.com>

58 CHAPTER 3 Customizing configuration

7 An application.properties or application.yml file packaged inside of the
application

8 Property sources specified by @PropertySource
9 Default properties

This list is in order of precedence. That is, any property set from a source higher in
the list will override the same property set on a source lower in the list. Command-line
arguments, for instance, override properties from any other property source.

 As for the application.properties and application.yml files, they can reside in any
of four locations:

1 Externally, in a /config subdirectory of the directory from which the applica-
tion is run

2 Externally, in the directory from which the application is run
3 Internally, in a package named “config”
4 Internally, at the root of the classpath

Again, this list is in order of precedence. That is, an application.properties file in a
/config subdirectory will override the same properties set in an application.properties
file in the application’s classpath.

 Also, I’ve found that if you have both application.properties and application.yml
side by side at the same level of precedence, properties in application.yml will over-
ride those in application.properties.

 Disabling an ascii-art banner is just a small example of how to use properties. Let’s
look at a few more common ways to tweak the auto-configured beans.

3.2.1 Fine-tuning auto-configuration

As I said, there are well over 300 properties that you can set to tweak and adjust the
beans in a Spring Boot application. Appendix C gives an exhaustive list of these prop-
erties, but it’d be impossible to go over each and every one of them here. Instead, let’s
examine a few of the more commonly useful properties exposed by Spring Boot.

DISABLING TEMPLATE CACHING

If you’ve been tinkering around much with the reading-list application, you may have
noticed that changes to any of the Thymeleaf templates aren’t applied unless you
restart the application. That’s because Thymeleaf templates are cached by default.
This improves application performance because you only compile the templates once,
but it’s difficult to make changes on the fly during development.

 You can disable Thymeleaf template caching by setting spring.thymeleaf.cache
to false. You can do this when you run the application from the command line by set-
ting it as a command-line argument:

$ java -jar readinglist-0.0.1-SNAPSHOT.jar --spring.thymeleaf.cache=false

Licensed to Thomas Snead <n.ordickan@gmail.com>

59Externalizing configuration with properties

Or, if you’d rather have caching turned off every time you run the application, you
might create an application.yml file with the following lines:

spring:
thymeleaf:
cache: false

You’ll want to make sure that this application.yml file doesn’t follow the application
into production, or else your production application won’t realize the performance
benefits of template caching.

 As a developer, you may find it convenient to have template caching turned off all
of the time while you make changes to the templates. In that case, you can turn off
Thymeleaf caching via an environment variable:

$ export spring_thymeleaf_cache=false

Even though we’re using Thymeleaf for our application’s views, template caching can
be turned off for Spring Boot’s other supported template options by setting these
properties:

■ spring.freemarker.cache (Freemarker)
■ spring.groovy.template.cache (Groovy templates)
■ spring.velocity.cache (Velocity)

By default, all of these properties are true, meaning that the templates are cached.
Setting them to false disables caching.

CONFIGURING THE EMBEDDED SERVER

When you run a Spring Boot application from the command line (or via Spring Tool
Suite), the application starts an embedded server (Tomcat, by default) listening on
port 8080. This is fine for most cases, but it can become problematic if you find your-
self needing to run multiple applications simultaneously. If all of the applications try
to start a Tomcat server on the same port, there’ll be port collisions starting with the
second application.

 If, for any reason, you’d rather the server listen on a different port, then all you
need to do is set the server.port property. If this is a one-time change, it’s easy
enough to do this as a command-line argument:

$ java -jar readinglist-0.0.1-SNAPSHOT.jar --server.port=8000

But if you want the port change to be more permanent, you could set server.port in
one of the other supported locations. For instance, you might set it in an applica-
tion.yml file at the root of the application’s classpath:

server:
port: 8000

Licensed to Thomas Snead <n.ordickan@gmail.com>

60 CHAPTER 3 Customizing configuration

Aside from adjusting the server’s port, you might also need to enable the server to
serve securely over HTTPS. The first thing you’ll need to do is create a keystore using
the JDK’s keytool utility:

$ keytool -keystore mykeys.jks -genkey -alias tomcat -keyalg RSA

You’ll be asked several questions about your name and organization, most of which
are irrelevant. But when asked for a password, be sure to remember what you choose.
For the sake of this example, I chose “letmein” as the password.

 Now you just need to set a few properties to enable HTTPS in the embedded server.
You could specify them all at the command line, but that would be terribly inconve-
nient. Instead, you’ll probably set them in application.properties or application.yml.
In application.yml, they might look like this:

server:
port: 8443
ssl:
key-store: file:///path/to/mykeys.jks
key-store-password: letmein
key-password: letmein

Here the server.port property is being set to 8443, a common choice for develop-
ment HTTPS servers. The server.ssl.key-store property should be set to the path
where the keystore file was created. Here it’s shown with a file:// URL to load it from
the filesystem, but if you package it within the application JAR file, you should use a
classpath: URL to reference it. And both the server.ssl.key-store-password and
server.ssl.key-password properties are set to the password that was given when cre-
ating the keystore.

 With these properties in place, your application should be listening for HTTPS
requests on port 8443. (Depending on which browser you’re using, you may encoun-
ter a warning about the server not being able to verify its identity. This is nothing to
worry about when serving from localhost during development.)

CONFIGURING LOGGING

Most applications provide some form of logging. And even if your application doesn’t log
anything directly, the libraries that your application uses will certainly log their activity.

 By default, Spring Boot configures logging via Logback (http://logback.qos.ch) to
log to the console at INFO level. You’ve probably already seen plenty of INFO-level
logging as you’ve run the application and other examples.

Swapping out Logback for another logging implementation
Generally speaking, you should never need to switch logging implementations; Log-
back should suit you fine. However, if you decide that you’d rather use Log4j or
Log4j2, you’ll need to change your dependencies to include the appropriate starter
for the logging implementation you want to use and to exclude Logback.

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://logback.qos.ch/

61Externalizing configuration with properties

For full control over the logging configuration, you can create a logback.xml file at
the root of the classpath (in src/main/resources). Here’s an example of a simple log-
back.xml file you might use:

<configuration>
<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
<encoder>

<pattern>
%d{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%n

</pattern>
</encoder>

</appender>

<logger name="root" level="INFO"/>

(continued)
For Maven builds, you can exclude Logback by excluding the default logging starter
transitively resolved by the root starter dependency:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
<exclusions>
<exclusion>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-logging</artifactId>

</exclusion>
</exclusions>

</dependency>

In Gradle, it’s easiest to place the exclusion under the configurations section:

configurations {
all*.exclude group:'org.springframework.boot',

module:'spring-boot-starter-logging'
}

With the default logging starter excluded, you can now include the starter for the log-
ging implementation you’d rather use. With a Maven build you can add Log4j like this:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-log4j</artifactId>

</dependency>

In a Gradle build you can add Log4j like this:

compile("org.springframework.boot:spring-boot-starter-log4j")

If you’d rather use Log4j2, change the artifact from “spring-boot-starter-log4j” to
“spring-boot-starter-log4j2”.

Licensed to Thomas Snead <n.ordickan@gmail.com>

62 CHAPTER 3 Customizing configuration

<root level="INFO">
<appender-ref ref="STDOUT" />

</root>
</configuration>

Aside from the pattern used for logging, this Logback configuration is more or less
equivalent to the default you’ll get if you have no logback.xml file. But by editing log-
back.xml you can gain full control over your application’s log files. The specifics of
what can go into logback.xml are outside the scope of this book, so refer to Logback’s
documentation for more information.

 Even so, the most common changes you’ll make to a logging configuration are to
change the logging levels and perhaps to specify a file where the logs should be writ-
ten. With Spring Boot configuration properties, you can make those changes without
having to create a logback.xml file.

 To set the logging levels, you create properties that are prefixed with logging.level,
followed by the name of the logger for which you want to set the logging level. For
instance, suppose you’d like to set the root logging level to WARN, but log Spring Security
logs at DEBUG level. The following entries in application.yml will take care of it for you:

logging:
level:
root: WARN
org:

springframework:
security: DEBUG

Optionally, you can collapse the Spring Security package name to a single line:

logging:
level:
root: WARN
org.springframework.security: DEBUG

Now suppose that you want to write the log entries to a file named BookWorm.log at
/var/logs/. The logging.path and logging.file properties can help with that:

logging:
path: /var/logs/
file: BookWorm.log
level:
root: WARN
org:

springframework:
security: DEBUG

Assuming that the application has write permissions to /var/logs/, the log entries will
be written to /var/logs/BookWorm.log. By default, the log files will rotate once they
hit 10 megabytes in size.

Licensed to Thomas Snead <n.ordickan@gmail.com>

63Externalizing configuration with properties

 Similarly, all of these properties can be set in application.properties like this:

logging.path=/var/logs/
logging.file=BookWorm.log
logging.level.root=WARN
logging.level.root.org.springframework.security=DEBUG

If you still need full control of the logging configuration, but would rather name the
Logback configuration file something other than logback.xml, you can specify a cus-
tom name by setting the logging.config property:

logging:
config:
classpath:logging-config.xml

Although you usually won’t need to change the configuration file’s name, it can come
in handy if you want to use two different logging configurations for different runtime
profiles (see section 3.2.3).

CONFIGURING A DATA SOURCE

At this point, we’re still developing our reading-list application. As such, the
embedded H2 database we’re using is perfect for our needs. But once we take the
application into production, we may want to consider a more permanent database
solution.

 Although you could explicitly configure your own DataSource bean, it’s usually
not necessary. Instead, simply configure the URL and credentials for your database via
properties. For example, if you’re using a MySQL database, your application.yml file
might look like this:

spring:
datasource:
url: jdbc:mysql://localhost/readinglist
username: dbuser
password: dbpass

You usually won’t need to specify the JDBC driver; Spring Boot can figure it out from the
database URL. But if there is a problem, you can try setting the spring.datasource
.driver-class-name property:

spring:
datasource:
url: jdbc:mysql://localhost/readinglist
username: dbuser
password: dbpass
driver-class-name: com.mysql.jdbc.Driver

Spring Boot will use this connection data when auto-configuring the DataSource
bean. The DataSource bean will be pooled, using Tomcat’s pooling DataSource if it’s

Licensed to Thomas Snead <n.ordickan@gmail.com>

64 CHAPTER 3 Customizing configuration

available on the classpath. If not, it will look for and use one of these other connection
pool implementations on the classpath:

■ HikariCP
■ Commons DBCP
■ Commons DBCP 2

Although these are the only connection pool options available through auto-configuration,
you are always welcome to explicitly configure a DataSource bean to use whatever connec-
tion pool implementation you’d like.

 You may also choose to look up the DataSource from JNDI by setting the
spring.datasource.jndi-name property:

spring:
datasource:
jndi-name: java:/comp/env/jdbc/readingListDS

If you set the spring.datasource.jndi-name property, the other datasource connec-
tion properties (if set) will be ignored.

 There are many ways to influence the components that Spring Boot auto-configures
by just setting a property or two. But this style of externalized configuration is not limited
to the beans configured by Spring Boot. Let’s look at how you can use the very same
property configuration mechanism to fine-tune your own application components.

3.2.2 Externally configuring application beans

Suppose that we wanted to show not just the title of a book on someone’s reading list,
but also provide a link to the book on Amazon.com. And, not only do we want to pro-
vide a link to the book, but we also want to tag the book to take advantage of Amazon’s
associate program so that if anyone purchases a book through one of the links in our
application, we’d receive a small payment for the referral.

 This is simple enough to do by changing the Thymeleaf template to render the
title of each book as a link:

<a th:href="'http://www.amazon.com/gp/product/'
+ ${book.isbn}
+ '/tag=habuma-20'"

th:text="${book.title}">Title

This will work perfectly. Now if anyone clicks on the link and buys the book, I will get
credit for the referral. That’s because “habuma-20” is my Amazon Associate ID. If
you’d rather receive credit, you can easily change the value of the tag attribute to your
Amazon Associate ID in the Thymeleaf template.

 Even though it’s easy enough to change the Amazon Associate ID in the template,
it’s still hard-coded. We’re only linking to Amazon from this one template, but we may
later add features to the application where we link to Amazon from several pages. In
that case, changes to the Amazon Associate ID would require changes to several places

Licensed to Thomas Snead <n.ordickan@gmail.com>

www.amazon.com

65Externalizing configuration with properties

in the application code. That’s why details like this are often better kept out of the
code so that they can be managed in a single place.

 Rather than hard-code the Amazon Associate ID in the template, we can refer to it
as a value in the model:

<a th:href="'http://www.amazon.com/gp/product/'
+ ${book.isbn}
+ '/tag=' + ${amazonID}"

th:text="${book.title}">Title

In addition, ReadingListController will need to populate the model at the key “ama-
zonID” to contain the Amazon Associate ID. Again, we shouldn’t hard-code it, but
instead refer to an instance variable. And that instance variable should be populated
from the property configuration. Listing 3.4 shows the new ReadingListController,
which populates the model from an injected Amazon Associate ID.

package readinglist;

import java.util.List;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;

@Controller
@RequestMapping("/")
@ConfigurationProperties(prefix="amazon")
public class ReadingListController {

private String associateId;

private ReadingListRepository readingListRepository;

@Autowired
public ReadingListController(

ReadingListRepository readingListRepository) {
this.readingListRepository = readingListRepository;

}

public void setAssociateId(String associateId) {
this.associateId = associateId;

}

@RequestMapping(method=RequestMethod.GET)
public String readersBooks(Reader reader, Model model) {
List<Book> readingList =

Listing 3.4 ReadingListController modified to accept an Amazon ID

Inject with
properties

Setter method
for associateId

Licensed to Thomas Snead <n.ordickan@gmail.com>

66 CHAPTER 3 Customizing configuration

readingListRepository.findByReader(reader);
if (readingList != null) {

model.addAttribute("books", readingList);
model.addAttribute("reader", reader);
model.addAttribute("amazonID", associateId);

}
return "readingList";

}

@RequestMapping(method=RequestMethod.POST)
public String addToReadingList(Reader reader, Book book) {
book.setReader(reader);
readingListRepository.save(book);
return "redirect:/";

}

}

As you can see, the ReadingListController now has an associateId property and a
corresponding setAssociateId() method through which the property can be set.
And readersBooks() now adds the value of associateId to the model under the key
“amazonID”.

 Perfect! Now the only question is where associateId gets its value.
 Notice that ReadingListController is now annotated with @Configuration-

Properties. This specifies that this bean should have its properties injected (via setter
methods) with values from configuration properties. More specifically, the prefix
attribute specifies that the ReadingListController bean will be injected with proper-
ties with an “amazon” prefix.

 Putting this all together, we’ve specified that ReadingListController should have
its properties injected from “amazon”-prefixed configuration properties. Reading-
ListController has only one property with a setter method—the associateId prop-
erty. Therefore, all we need to do to specify the Amazon Associate ID is to add an
amazon.associateId property in one of the supported property source locations.

 For example, we could set that property in application.properties:

amazon.associateId=habuma-20

Or in application.yml:

amazon:
associateId: habuma-20

Or we could set it as an environment variable, specify it as a command-line argument,
or add it in any of the other places where configuration properties can be set.

ENABLING CONFIGURATION PROPERTIES Technically, the @Configuration-
Properties annotation won’t work unless you’ve enabled it by adding
@EnableConfigurationProperties in one of your Spring configuration
classes. This is often unnecessary, however, because all of the configuration

Put associateId
into model

Licensed to Thomas Snead <n.ordickan@gmail.com>

67Externalizing configuration with properties

classes behind Spring Boot auto-configuration are already annotated with
@EnableConfigurationProperties. Therefore, unless you aren’t taking
advantage of auto-configuration at all (and why would that ever happen?),
you shouldn’t need to explicitly use @EnableConfigurationProperties.

It’s also worth noting that Spring Boot’s property resolver is clever enough to treat
camel-cased properties as interchangeable with similarly named properties with
hyphens or underscores. In other words, a property named amazon.associateId is
equivalent to both amazon.associate_id and amazon.associate-id. Feel free to use
the naming convention that suits you best.

COLLECTING PROPERTIES IN ONE CLASS

Although annotating ReadingListController with @ConfigurationProperties

works fine, it may not be ideal. Doesn’t it seem a little odd that the property prefix is
“amazon” when, in fact, ReadingListController has little to do with Amazon? More-
over, future enhancements might present the need to configure properties unrelated
to Amazon in ReadingListController.

 Instead of capturing the configuration properties in ReadingListController, it
may be better to annotate a separate bean with @ConfigurationProperties and let
that bean collect all of the configuration properties. AmazonProperties in listing 3.5,
for example, captures the Amazon-specific configuration properties.

package readinglist;

import org.springframework.boot.context.properties.
ConfigurationProperties;

import org.springframework.stereotype.Component;

@Component
@ConfigurationProperties("amazon")
public class AmazonProperties {

private String associateId;

public void setAssociateId(String associateId) {
this.associateId = associateId;

}

public String getAssociateId() {
return associateId;

}

}

With AmazonProperties capturing the amazon.associateId configuration property,
we can change ReadingListController (as shown in listing 3.6) to pull the Amazon
Associate ID from an injected AmazonProperties.

Listing 3.5 Capturing configuration properties in a bean

Inject with “amazon”-
prefixed properties

associateId
setter method

Licensed to Thomas Snead <n.ordickan@gmail.com>

68 CHAPTER 3 Customizing configuration

package readinglist;

import java.util.List;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;

@Controller
@RequestMapping("/")
public class ReadingListController {

private ReadingListRepository readingListRepository;
private AmazonProperties amazonProperties;

@Autowired
public ReadingListController(

ReadingListRepository readingListRepository,
AmazonProperties amazonProperties) {

this.readingListRepository = readingListRepository;
this.amazonProperties = amazonProperties;

}

@RequestMapping(method=RequestMethod.GET)
public String readersBooks(Reader reader, Model model) {
List<Book> readingList =

readingListRepository.findByReader(reader);
if (readingList != null) {

model.addAttribute("books", readingList);
model.addAttribute("reader", reader);
model.addAttribute("amazonID", amazonProperties.getAssociateId());

}
return "readingList";

}

@RequestMapping(method=RequestMethod.POST)
public String addToReadingList(Reader reader, Book book) {
book.setReader(reader);
readingListRepository.save(book);
return "redirect:/";

}

}

ReadingListController is no longer the direct recipient of configuration properties.
Instead, it obtains the information it needs from the injected AmazonProperties bean.

 As we’ve seen, configuration properties are useful for tweaking both auto-configured
components as well as the details injected into our own application beans. But what if

Listing 3.6 ReadingListController injected with AmazonProperties

Inject
AmazonProperties

Add Associate ID
to model

Licensed to Thomas Snead <n.ordickan@gmail.com>

69Externalizing configuration with properties

we need to configure different properties for different deployment environments? Let’s
take a look at how to use Spring profiles to set up environment-specific configuration.

3.2.3 Configuring with profiles

When applications are deployed to different runtime environments, there are usually
some configuration details that will differ. The details of a database connection, for
instance, are likely different in a development environment than in a quality assur-
ance environment, and different still in a production environment. The Spring
Framework introduced support for profile-based configuration in Spring 3.1. Profiles
are a type of conditional configuration where different beans or configuration classes
are used or ignored based on what profiles are active at runtime.

 For instance, suppose that the security configuration we created in listing 3.1 is for
production purposes, but the auto-configured security configuration is fine for devel-
opment. In that case, we can annotate SecurityConfig with @Profile like this:

@Profile("production")
@Configuration
@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {

...

}

The @Profile annotation used here requires that the “production” profile be active at
runtime for this configuration to be applied. If the “production” profile isn’t active,
this configuration will be ignored and, for lack of another overriding security configu-
ration, the auto-configured security configuration will be applied.

 Profiles can be activated by setting the spring.profiles.active property using
any of the means available for setting any other configuration property. For example,
you could activate the “production” profile by running the application at the com-
mand line like this:

$ java -jar readinglist-0.0.1-SNAPSHOT.jar --
spring.profiles.active=production

Or you can add the spring.profiles.active property to application.yml:

spring:
profiles:
active: production

Or you could set an environment variable and put it in application.properties or use
any of the other options mentioned at the beginning of section 3.2.

 But because Spring Boot auto-configures so much for you, it would be very incon-
venient to write explicit configuration just so that you can have a place to put @Profile.

Licensed to Thomas Snead <n.ordickan@gmail.com>

70 CHAPTER 3 Customizing configuration

Fortunately, Spring Boot supports profiles for properties set in application.properties
and application.yml.

 To demonstrate profiled properties, suppose that you want a different logging con-
figuration in production than in development. In production, you’re only interested
in log entries at WARN level or higher, and you want to write the log entries to a log
file. In development, however, you only want things logged to the console and at
DEBUG level or higher.

 All you need to do is create separate configurations for each environment. How
you do that, however, depends on whether you’re using a properties file configuration
or YAML configuration.

WORKING WITH PROFILE-SPECIFIC PROPERTIES FILES

If you’re using application.properties to express configuration properties, you can
provide profile-specific properties by creating additional properties files named with
the pattern “application-{profile}.properties”.

 For the logging scenario, the development configuration would be in a file named
application-development.properties and contain properties for verbose, console-
written logging:

logging.level.root=DEBUG

But for production, application-production.properties would configure logging to be
at WARN level and higher and to write to a log file:

logging.path=/var/logs/
logging.file=BookWorm.log
logging.level.root=WARN

Meanwhile, any properties that aren’t specific to any profile or that serve as defaults
(in case a profile-specific configuration doesn’t specify otherwise) can continue to be
expressed in application.properties:

amazon.associateId=habuma-20
logging.level.root=INFO

CONFIGURING WITH MULTI-PROFILE YAML FILES

If you’re using YAML for configuration properties, you can follow a similar naming
convention as for properties files. That is, you can create YAML files whose names fol-
low a pattern of “application-{profile}.yml” and continue to put non-profiled proper-
ties in application.yml.

 But with YAML, you also have the option of expressing configuration properties for
all profiles in a single application.yml file. For example, the logging configuration we
want can be declared in application.yml like this:

logging:
level:
root: INFO

Licensed to Thomas Snead <n.ordickan@gmail.com>

71Customizing application error pages

spring:
profiles: development

logging:
level:
root: DEBUG

spring:
profiles: production

logging:
path: /tmp/
file: BookWorm.log
level:
root: WARN

As you can see, this application.yml file is divided into three sections by a set of tri-
ple hyphens (---). The second and third sections each specify a value for spring
.profiles. This property indicates which profile each section’s properties apply to.
The properties defined in the middle section apply to development because it sets
spring.profiles to “development”. Similarly, the last section has spring.profiles
set to “production”, making it applicable when the “production” profile is active.

 The first section, on the other hand, doesn’t specify a value for spring.profiles.
Therefore, its properties are common to all profiles or are defaults if the active profile
doesn’t otherwise have the properties set.

 Aside from auto-configuration and external configuration properties, Spring Boot
has one other trick up its sleeve to simplify a common development task: it automati-
cally configures a page to be displayed when an application encounters any errors. To
wrap up this chapter, we’ll take a look at Spring Boot’s error page and see how to cus-
tomize it to fit our application.

3.3 Customizing application error pages
Errors happen. Even some of the most robust applications running in production
occasionally run into trouble. Although it’s important to reduce the chance that a
user will encounter an error, it’s also important that your application still present itself
well when displaying an error page.

 In recent years, creative error pages have become an art form. If you’ve ever seen
the Star Wars–inspired error page at GitHub.com or DropBox.com’s Escher-like error
page, you have an idea of what I’m talking about.

 I don’t know if you’ve encountered any errors while trying out the reading-list appli-
cation, but if so you’ve probably seen an error page much like the one in figure 3.1.

Licensed to Thomas Snead <n.ordickan@gmail.com>

www.github.com
www.dropbox.com

72 CHAPTER 3 Customizing configuration

Spring Boot offers this “whitelabel” error page by default as part of auto-configuration.
Even though it’s slightly more attractive than a stack trace, it doesn’t compare with some
of the great works of error art available on the internet. In the interest of presenting your
application failures as masterpieces, you’ll probably want to create a custom error page
for your applications.

 The default error handler that’s auto-configured by Spring Boot looks for a view
whose name is “error”. If it can’t find one, it uses its default whitelabel error view
shown in figure 3.1. Therefore, the easiest way to customize the error page is to create
a custom view that will resolve for a view named “error”.

 Ultimately this depends on the view resolvers in place when the error view is being
resolved. This includes

■ Any bean that implements Spring’s View interface and has a bean ID of “error”
(resolved by Spring’s BeanNameViewResolver)

■ A Thymeleaf template named “error.html” if Thymeleaf is configured
■ A FreeMarker template named “error.ftl” if FreeMarker is configured
■ A Velocity template named “error.vm” if Velocity is configured
■ A JSP template named “error.jsp” if using JSP views

Because we’re using Thymeleaf for the reading-list application, all we must do to cus-
tomize the error page is create a file named “error.html” and place it in the templates
folder along with our other application templates. Listing 3.7 shows a simple, yet
effective replacement for the default whitelabel error page.

Figure 3.1 Spring Boot’s default whitelabel error page.

Licensed to Thomas Snead <n.ordickan@gmail.com>

73Customizing application error pages

<html>
<head>
<title>Oops!</title>
<link rel="stylesheet" th:href="@{/style.css}"></link>

</head>

<html>
<div class="errorPage">

Oops!

<p>There seems to be a problem with the page you requested

().</p>

<p th:text="${'Details: ' + message}"></p>
</div>

</html>

</html>

This custom error template should be named “error.html” and placed in the tem-
plates directory for the Thymeleaf template resolver to find. For a typical Maven or
Gradle build, that means putting it in src/main/resources/templates so that it’s at the
root of the classpath during runtime.

 For the most part, this is a simple Thymeleaf template that displays an image and
some error text. There are two specific pieces of information that it also renders: the
request path of the error and the exception message. These aren’t the only details
available to an error page, however. By default, Spring Boot makes the following error
attributes available to the error view:

■ timestamp—The time that the error occurred
■ status—The HTTP status code
■ error—The error reason
■ exception—The class name of the exception
■ message—The exception message (if the error was caused by an exception)
■ errors—Any errors from a BindingResult exception (if the error was caused

by an exception)
■ trace—The exception stack trace (if the error was caused by an exception)
■ path—The URL path requested when the error occurred

Some of these attributes, such as path, are useful when communicating the problem
to the user. Others, such as trace, should be used sparingly, be hidden, or be used
cleverly on the error page to keep the error page as user-friendly as possible.

 You’ll also notice that the template references an image named MissingPage.png.
The actual content of the image is unimportant, so feel free to flex your graphic
design muscles and come up with an image that suits you. But be sure to put it in src/
main/resources/static or src/main/resources/public so that it can be served when
the application is running.

Listing 3.7 Custom error page for the reading-list application

Show
requested
path

Show error
details

Licensed to Thomas Snead <n.ordickan@gmail.com>

74 CHAPTER 3 Customizing configuration

Figure 3.2 shows what the user will see when an error occurs. It may not quite be a
work of art, but I think it raises the aesthetics of the application’s error page a notch
or two.

3.4 Summary
Spring Boot eliminates much of the boilerplate configuration that’s often required in
Spring applications. But by letting Spring Boot do all of the configuration, you’re
relying on it to configure components in ways that suit your application. When auto-
configuration doesn’t fit your needs, Spring Boot allows you to override and fine-tune
the configuration it provides.

 Overriding auto-configuration is a simple matter of writing explicit Spring configu-
ration as you would in the absence of Spring Boot. Spring Boot’s auto-configuration is
designed to favor application-provided configuration over its own auto-configuration.

Figure 3.2 A custom error page exhibits style in the face of failure

Licensed to Thomas Snead <n.ordickan@gmail.com>

75Summary

 Even when auto-configuration is suitable, you may need to adjust a few details.
Spring Boot enables several property resolvers that let you tweak configuration by set-
ting properties as environment variables, in properties files, in YAML files, and in sev-
eral other ways. This same property-based configuration model can even be applied to
application-defined components, enabling value-injection into bean properties from
external configuration sources.

 Spring Boot also auto-configures a simple whitelabel error page. Although it’s
more user-friendly than an exception and stack trace, the whitelabel error page still
leaves a lot to be desired aesthetically. Fortunately, Spring Boot offers several options
for customizing or completely replacing the whitelabel error page to suit an applica-
tion’s specific style.

 Now that we’ve written a complete application with Spring Boot, we should verify
that it actually does what we expect it to do. That is, instead of poking at it in the web
browser manually, we should write some automated and repeatable tests that exercise
the application and prove that it’s working correctly. That’s exactly what we’ll do in
the next chapter.

Licensed to Thomas Snead <n.ordickan@gmail.com>

76

Testing with Spring Boot

It’s been said that if you don’t know where you’re going, any road will get you
there. But with software development, if you don’t know where you’re going, you’ll
likely end up with a buggy application that nobody can use.

 The best way to know for sure where you’re going when writing applications is
to write tests that assert the desired behavior of an application. If those tests fail,
you know you have some work to do. If they pass, then you’ve arrived (at least until
you think of some more tests that you can write).

 Whether you write tests first or after the code has already been written, it’s
important that you write tests to not only verify the accuracy of your code, but to
also to make sure it does everything you expect it to. Tests are also a great safeguard
to make sure that things don’t break as your application continues to evolve.

 When it comes to writing unit tests, Spring is generally out of the picture. Loose
coupling and interface-driven design, which Spring encourages, makes it really
easy to write unit tests. But Spring isn’t necessarily involved in those unit tests.

This chapter covers
■ Integration testing
■ Testing apps in a server
■ Spring Boot’s test utilities

Licensed to Thomas Snead <n.ordickan@gmail.com>

77Integration testing auto-configuration

 Integration tests, on the other hand, require some help from Spring. If Spring is
responsible for configuring and wiring up the components in your production appli-
cation, then Spring should also be responsible for configuring and wiring up those
components in your tests.

 Spring’s SpringJUnit4ClassRunner helps load a Spring application context in
JUnit-based application tests. Spring Boot builds on Spring’s integration testing sup-
port by enabling auto-configuration and web server startup when testing Spring Boot
applications. It also offers a handful of useful testing utilities.

 In this chapter, we’ll look at all of the ways that Spring Boot supports integration
testing. We’ll start by looking at how to test with a fully Spring Boot-enabled applica-
tion context.

4.1 Integration testing auto-configuration
At the core of everything that the Spring Framework does, its most essential task is to
wire together all of the components that make up an application. It does this by read-
ing a wiring specification (whether it be XML, Java-based, Groovy-based, or otherwise),
instantiating beans in an application context, and injecting beans into other beans
that depend on them.

 When integration testing a Spring application, it’s important to let Spring wire up
the beans that are the target of the test the same way it wires up those beans when the
application is running in production. Sure, you might be able to manually instantiate
the components and inject them into each other, but for any substantially big applica-
tion, that can be an arduous task. Moreover, Spring offers additional facilities such as
component-scanning, autowiring, and declarative aspects such as caching, transac-
tions, and security. Given all that would be required to recreate what Spring does, it’s
generally best to let Spring do the heavy lifting, even in an integration test.

 Spring has offered excellent support for integration testing since version 1.1.1.
Since Spring 2.5, integration testing support has been offered in the form of
SpringJUnit4ClassRunner, a JUnit class runner that loads a Spring application con-
text for use in a JUnit test and enables autowiring of beans into the test class.

 For example, consider the following listing, which shows a very basic Spring inte-
gration test.

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(

classes=AddressBookConfiguration.class)
public class AddressServiceTests {

@Autowired
private AddressService addressService;

@Test

Listing 4.1 Integration testing Spring with SpringJUnit4ClassRunner

Loads application
context

Injects address
service

Licensed to Thomas Snead <n.ordickan@gmail.com>

78 CHAPTER 4 Testing with Spring Boot

public void testService() {
Address address = addressService.findByLastName("Sheman");
assertEquals("P", address.getFirstName());
assertEquals("Sherman", address.getLastName());
assertEquals("42 Wallaby Way", address.getAddressLine1());
assertEquals("Sydney", address.getCity());
assertEquals("New South Wales", address.getState());
assertEquals("2000", address.getPostCode());

}

}

As you can see, AddressServiceTests is annotated with both @RunWith and @Context-
Configuration. @RunWith is given SpringJUnit4ClassRunner.class to enable Spring
integration testing.1 Meanwhile, @ContextConfiguration specifies how to load the
application context. Here we’re asking it to load the Spring application context given
the specification defined in AddressBookConfiguration.

 In addition to loading the application context, SpringJUnit4ClassRunner also
makes it possible to inject beans from the application context into the test itself via
autowiring. Because this test is targeting an AddressService bean, it is autowired into
the test. Finally, the testService() method makes calls to the address service and ver-
ifies the results.

 Although @ContextConfiguration does a great job of loading the Spring application
context, it doesn’t load it with the full Spring Boot treatment. Spring Boot applications
are ultimately loaded by SpringApplication, either explicitly (as in listing 2.1) or using
SpringBootServletInitializer (which we’ll look at in chapter 8). SpringApplication
not only loads the application context, but also enables logging, the loading of external
properties (application.properties or application.yml), and other features of Spring
Boot. If you’re using @ContextConfiguration, you won’t get those features.

 To get those features back in your integration tests, you can swap out @Context-
Configuration for Spring Boot’s @SpringApplicationConfiguration:

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(

classes=AddressBookConfiguration.class)
public class AddressServiceTests {

...
}

The use of @SpringApplicationConfiguration is largely identical to @Context-
Configuration. But unlike @ContextConfiguration, @SpringApplicationConfigu-
ration loads the Spring application context using SpringApplication the same way
and with the same treatment it would get if it was being loaded in a production appli-
cation. This includes the loading of external properties and Spring Boot logging.

1 As of Spring 4.2, you can optionally use SpringClassRule and SpringMethodRule as JUnit rule-based
alternatives to SpringJUnit4ClassRunner.

Tests address
service

Licensed to Thomas Snead <n.ordickan@gmail.com>

79Testing web applications

 Suffice it to say that, for the most part, @SpringApplicationConfiguration
replaces @ContextConfiguration when writing tests for Spring Boot applications.
We’ll certainly use @SpringApplicationConfiguration throughout this chapter as we
write tests for our Spring Boot application, including tests that target the web front
end of the application.

 Speaking of web testing, that’s what we’re going to do next.

4.2 Testing web applications
One of the nice things about Spring MVC is that it promotes a programming model
around plain old Java objects (POJOs) that are annotated to declare how they should
process web requests. This programming model is not only simple, it enables you to
treat controllers just as you would any other component in your application. You
might even be tempted to write tests against your controller that test them as POJOs.

 For instance, consider the addToReadingList() method from ReadingList-
Controller:

@RequestMapping(method=RequestMethod.POST)
public String addToReadingList(Book book) {

book.setReader(reader);
readingListRepository.save(book);
return "redirect:/readingList";

}

If you were to disregard the @RequestMapping method, you’d be left with a rather
basic Java method. It wouldn’t take much to imagine a test that provides a mock
implementation of ReadingListRepository, calls addToReadingList() directly, and
asserts the return value and verifies the call to the repository’s save() method.

 The problem with such a test is that it only tests the method itself. While that’s
better than no test at all, it fails to test that the method handles a POST request to
/readingList. It also fails to test that form fields are properly bound to the Book
parameter. And although you could assert that the returned String contains a certain
value, it would be impossible to test definitively that the request is, in fact, redirected
to /readingList after the method is finished.

 To properly test a web application, you need a way to throw actual HTTP requests at
it and assert that it processes those requests correctly. Fortunately, there are two options
available to Spring Boot application developers that make those kinds of tests possible:

■ Spring Mock MVC—Enables controllers to be tested in a mocked approximation
of a servlet container without actually starting an application server

■ Web integration tests—Actually starts the application in an embedded servlet con-
tainer (such as Tomcat or Jetty), enabling tests that exercise the application in a
real application server

Each of these kinds of tests has its share of pros and cons. Obviously, starting a server
will result in a slower test than mocking a servlet container. But there’s no doubt that

Licensed to Thomas Snead <n.ordickan@gmail.com>

80 CHAPTER 4 Testing with Spring Boot

server-based tests are closer to the real-world environment that they’ll be running in
when deployed to production.

 We’re going to start by looking at how you can test a web application using Spring’s
Mock MVC test framework. Then, in section 4.3, you’ll see how to write tests against an
application that’s actually running in an application server.

4.2.1 Mocking Spring MVC

Since Spring 3.2, the Spring Framework has had a very useful facility for testing web
applications by mocking Spring MVC. This makes it possible to perform HTTP
requests against a controller without running the controller within an actual servlet
container. Instead, Spring’s Mock MVC framework mocks enough of Spring MVC to
make it almost as though the application is running within a servlet container … but
it’s not.

 To set up a Mock MVC in your test, you can use MockMvcBuilders. This class offers
two static methods:

■ standaloneSetup()—Builds a Mock MVC to serve one or more manually created
and configured controllers

■ webAppContextSetup()—Builds a Mock MVC using a Spring application con-
text, which presumably includes one or more configured controllers

The primary difference between these two options is that standaloneSetup() expects
you to manually instantiate and inject the controllers you want to test, whereas
webAppContextSetup() works from an instance of WebApplicationContext, which
itself was probably loaded by Spring. The former is slightly more akin to a unit test in
that you’ll likely only use it for very focused tests around a single controller. The latter,
however, lets Spring load your controllers as well as their dependencies for a full-
blown integration test.

 For our purposes, we’re going to use webAppContextSetup() so that we can test
the ReadingListController as it has been instantiated and injected from the applica-
tion context that Spring Boot has auto-configured.

 The webAppContextSetup() takes a WebApplicationContext as an argument.
Therefore, we’ll need to annotate the test class with @WebAppConfiguration and use
@Autowired to inject the WebApplicationContext into the test as an instance variable.
The following listing shows the starting point for our Mock MVC tests.

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(

classes = ReadingListApplication.class)
@WebAppConfiguration
public class MockMvcWebTests {

Listing 4.2 Creating a Mock MVC for integration testing controllers

Enables web
context testing

Licensed to Thomas Snead <n.ordickan@gmail.com>

81Testing web applications

@Autowired
private WebApplicationContext webContext;

private MockMvc mockMvc;

@Before
public void setupMockMvc() {
mockMvc = MockMvcBuilders

.webAppContextSetup(webContext)

.build();
}

}

The @WebAppConfiguration annotation declares that the application context created
by SpringJUnit4ClassRunner should be a WebApplicationContext (as opposed to a
basic non-web ApplicationContext).

 The setupMockMvc() method is annotated with JUnit’s @Before, indicating that it
should be executed before any test methods. It passes the injected WebApplication-
Context into the webAppContextSetup() method and then calls build() to produce a
MockMvc instance, which is assigned to an instance variable for test methods to use.

 Now that we have a MockMvc, we’re ready to write some test methods. Let’s start
with a simple test method that performs an HTTP GET request against /readingList
and asserts that the model and view meet our expectations. The following homePage()
test method does what we need:

@Test
public void homePage() throws Exception {

mockMvc.perform(MockMvcRequestBuilders.get("/readingList"))
.andExpect(MockMvcResultMatchers.status().isOk())
.andExpect(MockMvcResultMatchers.view().name("readingList"))
.andExpect(MockMvcResultMatchers.model().attributeExists("books"))
.andExpect(MockMvcResultMatchers.model().attribute("books",

Matchers.is(Matchers.empty())));
}

As you can see, a lot of static methods are being used in this test method, including
static methods from Spring’s MockMvcRequestBuilders and MockMvcResultMatchers,
as well as from the Hamcrest library’s Matchers. Before we dive into the details of this
test method, let’s add a few static imports so that the code is easier to read:

import static org.hamcrest.Matchers.*;
import static org.springframework.test.web.servlet.request.
 ➥ MockMvcRequestBuilders.*;
import static org.springframework.test.web.servlet.result.
 ➥ MockMvcResultMatchers.*;

With those static imports in place, the test method can be rewritten like this:

Injects
WebApplicationContext

Sets up
MockMvc

Licensed to Thomas Snead <n.ordickan@gmail.com>

82 CHAPTER 4 Testing with Spring Boot

@Test
public void homePage() throws Exception {

mockMvc.perform(get("/readingList"))
.andExpect(status().isOk())
.andExpect(view().name("readingList"))
.andExpect(model().attributeExists("books"))
.andExpect(model().attribute("books", is(empty())));

}

Now the test method almost reads naturally. First it performs a GET request against
/readingList. Then it expects that the request is successful (isOk() asserts an HTTP 200
response code) and that the view has a logical name of readingList. It also asserts that
the model contains an attribute named books, but that attribute is an empty collection.
It’s all very straightforward.

 The main thing to note here is that at no time is the application deployed to a web
server. Instead it’s run within a mocked out Spring MVC, just capable enough to han-
dle the HTTP requests we throw at it via the MockMvc instance.

 Pretty cool, huh?
 Let’s try one more test method. This time we’ll make it a bit more interesting by

actually sending an HTTP POST request to post a new book. We should expect that
after the POST request is handled, the request will be redirected back to /readingList
and that the books attribute in the model will contain the newly added book. The fol-
lowing listing shows how we can use Spring’s Mock MVC to do this kind of test.

@Test
public void postBook() throws Exception {
mockMvc.perform(post("/readingList")

.contentType(MediaType.APPLICATION_FORM_URLENCODED)

.param("title", "BOOK TITLE")

.param("author", "BOOK AUTHOR")

.param("isbn", "1234567890")

.param("description", "DESCRIPTION"))

.andExpect(status().is3xxRedirection())

.andExpect(header().string("Location", "/readingList"));

Book expectedBook = new Book();
expectedBook.setId(1L);
expectedBook.setReader("craig");
expectedBook.setTitle("BOOK TITLE");
expectedBook.setAuthor("BOOK AUTHOR");
expectedBook.setIsbn("1234567890");
expectedBook.setDescription("DESCRIPTION");

mockMvc.perform(get("/readingList"))
.andExpect(status().isOk())
.andExpect(view().name("readingList"))

Listing 4.3 Testing the post of a new book

Performs
POST request

Sets up
expected book

Performs GET
request

Licensed to Thomas Snead <n.ordickan@gmail.com>

83Testing web applications

.andExpect(model().attributeExists("books"))

.andExpect(model().attribute("books", hasSize(1)))

.andExpect(model().attribute("books",
contains(samePropertyValuesAs(expectedBook))));

}

Obviously, the test in listing 4.3 is a bit more involved. It’s actually two tests in one
method. The first part posts the book and asserts the results from that request. The
second part performs a fresh GET request against the home page and asserts that the
newly created book is in the model.

 When posting the book, we must make sure we set the content type to “application/
x-www-form-urlencoded” (with MediaType.APPLICATION_FORM_URLENCODED) as that
will be the content type that a browser will send when the book is posted in the running
application. We then use the MockMvcRequestBuilders’s param() method to set the
fields that simulate the form being submitted. Once the request has been performed,
we assert that the response is a redirect to /readingList.

 Assuming that much of the test method passes, we move on to part two. First, we
set up a Book object that contains the expected values. We’ll use this to compare with
the value that’s in the model after fetching the home page.

 Then we perform a GET request for /readingList. For the most part, this is no dif-
ferent than how we tested the home page before, except that instead of an empty col-
lection in the model, we’re checking that it has one item, and that the item is the
same as the expected Book we created. If so, then our controller seems to be doing its
job of saving a book when one is posted to it.

 So far, these tests have assumed an unsecured application, much like the one we
wrote in chapter 2. But what if we want to test a secured application, such as the one
from chapter 3?

4.2.2 Testing web security

Spring Security offers support for testing secured web applications easily. In order to
take advantage of it, you must add Spring Security’s test module to your build. The fol-
lowing testCompile dependency in Gradle is all you need:

testCompile("org.springframework.security:spring-security-test")

Or if you’re using Maven, add the following <dependency> to your build:

<dependency>
<groupId>org.springframework.security</groupId>
<artifactId>spring-security-test</artifactId>
<scope>test</scope>

</dependency>

With Spring Security’s test module in your application’s classpath, you just need to
apply the Spring Security configurer when creating the MockMvc instance:

Licensed to Thomas Snead <n.ordickan@gmail.com>

84 CHAPTER 4 Testing with Spring Boot

@Before
public void setupMockMvc() {
mockMvc = MockMvcBuilders

.webAppContextSetup(webContext)

.apply(springSecurity())

.build();
}

The springSecurity() method returns a Mock MVC configurer that enables Spring
Security for Mock MVC. By simply applying it as shown here, Spring Security will be in
play on all requests performed through MockMvc. The specific security configuration
will depend on how you’ve configured Spring Security (or how Spring Boot has auto-
configured Spring Security). In the case of the reading-list application, it’s the same
security configuration we created in SecurityConfig.java in chapter 3.

THE SPRINGSECURITY() METHOD springSecurity() is a static method of Secu-
rityMockMvcConfigurers, which I’ve statically imported for readability’s
sake.

With Spring Security enabled, we can no longer simply request the home page and
expect an HTTP 200 response. If the request isn’t authenticated, we should expect a
redirect to the login page:

@Test
public void homePage_unauthenticatedUser() throws Exception {
mockMvc.perform(get("/"))

.andExpect(status().is3xxRedirection())

.andExpect(header().string("Location",
"http://localhost/login"));

}

But how can we perform an authenticated request? Spring Security offers two annota-
tions that can help:

■ @WithMockUser—Loads the security context with a UserDetails using the given
username, password, and authorization

■ @WithUserDetails—Loads the security context by looking up a UserDetails
object for the given username

In both cases, Spring Security’s security context is loaded with a UserDetails object
that is to be used for the duration of the annotated test method. The @WithMockUser
annotation is the most basic of the two. It allows you to explicitly declare a UserDetails
to be loaded into the security context:

@Test
@WithMockUser(username="craig",

password="password",
roles="READER")

public void homePage_authenticatedUser() throws Exception {
...

}

Licensed to Thomas Snead <n.ordickan@gmail.com>

85Testing web applications

As you can see, @WithMockUser bypasses the normal lookup of a UserDetails object
and instead creates one with the values specified. For simple tests, this may be fine. But
for our test, we need a Reader (which implements UserDetails) instead of the generic
UserDetails that @WithMockUser creates. For that, we’ll need @WithUserDetails.

 The @WithUserDetails annotation uses the configured UserDetailsService to
load the UserDetails object. As you’ll recall from chapter 3, we configured a User-
DetailsService bean that looks up and returns a Reader object for a given username.
That’s perfect! So we’ll annotate our test method with @WithUserDetails, as shown in
the following listing.

@Test
@WithUserDetails("craig")
public void homePage_authenticatedUser() throws Exception {

Reader expectedReader = new Reader();
expectedReader.setUsername("craig");
expectedReader.setPassword("password");
expectedReader.setFullname("Craig Walls");

mockMvc.perform(get("/"))
.andExpect(status().isOk())
.andExpect(view().name("readingList"))
.andExpect(model().attribute("reader",

samePropertyValuesAs(expectedReader)))
.andExpect(model().attribute("books", hasSize(0)))

}

In listing 4.4, we use @WithUserDetails to declare that the “craig” user should be
loaded into the security context for the duration of this test method. Knowing that the
Reader will be placed into the model, the method starts by creating an expected
Reader object that it can compare with the model later in the test. Then it performs
the GET request and asserts the view name and model contents, including the model
attribute with the name “reader”.

 Once again, no servlet container is started up to run these tests. Spring’s Mock
MVC takes the place of an actual servlet container. The benefit of this approach is that
the test methods run faster because they don’t have to wait for the server to start.
Moreover, there’s no need to fire up a web browser to post the form, so the test is sim-
pler and faster.

 On the other hand, it’s not a complete test. It’s better than simply calling the con-
troller methods directly, but it doesn’t truly exercise the application in a web browser
and verify the rendered view. To do that, we’ll need to start a real web server and hit it
with a real web browser. Let’s see how Spring Boot can help us start a real web server
for our tests.

Listing 4.4 Testing a secured method with user authentication

Uses “craig”
user

Sets up expected
Reader

Performs GET
request

Licensed to Thomas Snead <n.ordickan@gmail.com>

86 CHAPTER 4 Testing with Spring Boot

4.3 Testing a running application
When it comes to testing web applications, nothing beats the real thing. Firing up the
application in a real server and hitting it with a real web browser is far more indicative
of how it will behave in the hands of users than poking at it with a mock testing
engine.

 But real tests in real servers with real web browsers can be tricky. Although there
are build-time plugins for deploying applications in Tomcat or Jetty, they are clunky to
set up. Moreover, it’s nearly impossible to run any one of a suite of many such tests in
isolation or without starting up your build tool.

 Spring Boot, however, has a solution. Because Spring Boot already supports run-
ning embedded servlet containers such as Tomcat or Jetty as part of the running appli-
cation, it stands to reason that the same mechanism could be used to start up the
application along with its embedded servlet container for the duration of a test.

 That’s exactly what Spring Boot’s @WebIntegrationTest annotation does. By anno-
tating a test class with @WebIntegrationTest, you declare that you want Spring Boot to
not only create an application context for your test, but also to start an embedded serv-
let container. Once the application is running along with the embedded container, you
can issue real HTTP requests against it and make assertions against the results.

 For example, consider the simple web test in listing 4.5, which uses @WebIntegra-
tionTest to start the application along with a server and uses Spring’s RestTemplate
to perform HTTP requests against the application.

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(

classes=ReadingListApplication.class)
@WebIntegrationTest
public class SimpleWebTest {

@Test(expected=HttpClientErrorException.class)
public void pageNotFound() {
try {

RestTemplate rest = new RestTemplate();
rest.getForObject(

"http://localhost:8080/bogusPage", String.class);
fail("Should result in HTTP 404");

} catch (HttpClientErrorException e) {
assertEquals(HttpStatus.NOT_FOUND, e.getStatusCode());
throw e;

}
}

}

Although this is a very simple test, it sufficiently demonstrates how to use the
@WebIntegrationTest to start the application with a server. The actual server that’s

Listing 4.5 Testing a web application in-server

Runs test
in server

Performs GET
request

Asserts HTTP
404 (not found)
response

Licensed to Thomas Snead <n.ordickan@gmail.com>

87Testing a running application

started will be determined in the same way it would be if we were running the applica-
tion at the command line. By default, it starts Tomcat listening on port 8080. Option-
ally, however, it could start Jetty or Undertow if either of those is in the classpath.

 The body of the test method is written assuming that the application is running
and listening on port 8080. It uses Spring’s RestTemplate to make a request for a non-
existent page and asserts that the response from the server is an HTTP 404 (not
found). The test will fail if any other response is returned.

4.3.1 Starting the server on a random port

As mentioned, the default behavior is to start the server listening on port 8080. That’s
fine for running a single test at a time on a machine where no other server is already
listening on port 8080. But if you’re like me, you’ve probably always got something lis-
tening on port 8080 on your local machine. In that case, the test would fail because
the server wouldn’t start due to the port collision. There must be a better way.

 Fortunately, it’s easy enough to ask Spring Boot to start up the server on a ran-
domly selected port. One way is to set the server.port property to 0 to ask Spring
Boot to select a random available port. @WebIntegrationTest accepts an array of
String for its value attribute. Each entry in the array is expected to be a name/value
pair, in the form name=value, to set properties for use in the test. To set server.port
you can use @WebIntegrationTest like this:

@WebIntegrationTest(value={"server.port=0"})

Or, because there’s only one property being set, it can take a simpler form:

@WebIntegrationTest("server.port=0")

Setting properties via the value attribute is handy in the general sense, but @WebInte-
grationTest also offers a randomPort attribute for a more expressive way of asking
the server to be started on a random port. You can ask for a random port by setting
randomPort to true:

@WebIntegrationTest(randomPort=true)

Now that we have the server starting on a random port, we need to be sure we use the
correct port when making web requests. At the moment, the getForObject() method
is hard-coded with port 8080 in its URL. If the port is randomly chosen, how can we
construct the request to use the right port?

 First we’ll need to inject the chosen port as an instance variable. To make this con-
venient, Spring Boot sets a property with the name local.server.port to the value of
the chosen port. All we need to do is use Spring’s @Value to inject that property:

@Value("${local.server.port}")
private int port;

Licensed to Thomas Snead <n.ordickan@gmail.com>

88 CHAPTER 4 Testing with Spring Boot

Now that we have the port, we just need to make a slight change to the getForObject()
call to use it:

rest.getForObject(
"http://localhost:{port}/bogusPage", String.class, port);

Here we’ve traded the hardcoded 8080 for a {port} placeholder in the URL. By pass-
ing the port property as the last parameter in the getForObject() call, we can be
assured that the placeholder will be replaced with whatever value was injected into
port.

4.3.2 Testing HTML pages with Selenium

RestTemplate is fine for simple requests and it’s perfect for testing REST endpoints.
But even though it can be used to make requests against URLs that return HTML
pages, it’s not very convenient for asserting the contents of the page or performing
operations on the page itself. At best, you’ll be able to assert the precise content of the
resulting HTML (which will result in fragile tests). But you won’t easily be able to assert
selected content on the page or perform operations such as clicking links or submit-
ting forms.

 A better choice for testing HTML applications is Selenium (www.seleniumhq.org).
Selenium does more than just perform requests and fetch the results for you to verify.
Selenium actually fires up a web browser and executes your test within the context of the
browser. It’s as close as you can possibly get to performing the tests manually with your
own hands. But unlike manual testing, Selenium tests are automated and repeatable.

 To test our reading list application using Selenium, let’s write a test that fetches the
home page, fills out the form for a new book, posts the form, and then finally asserts
that the landing page includes the newly added book.

 First we’ll need to add Selenium to the build as a test dependency:

testCompile("org.seleniumhq.selenium:selenium-java:2.45.0")

Now we can write the test class. The following listing shows a basic template for a Sele-
nium test that uses Spring Boot’s @WebIntegrationTest.

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(

classes=ReadingListApplication.class)
@WebIntegrationTest(randomPort=true)
public class ServerWebTests {

private static FirefoxDriver browser;

@Value("${local.server.port}")
private int port;

Listing 4.6 A template for Selenium testing with Spring Boot

Starts on a
random port

Injects
the port

Licensed to Thomas Snead <n.ordickan@gmail.com>

www.seleniumhq.org

89Testing a running application

@BeforeClass
public static void openBrowser() {
browser = new FirefoxDriver();
browser.manage().timeouts()

.implicitlyWait(10, TimeUnit.SECONDS);
}

@AfterClass
public static void closeBrowser() {
browser.quit();

}

}

As with the simpler web test we wrote earlier, this class is annotated with @WebIntegra-
tionTest and sets randomPort to true so that the application will be started and run
with a server listening on a random port. And, as before, that port is injected into the
port property so that we can use it to construct URLs to the running application.

 The static openBrowser() method creates a new instance of FirefoxDriver, which
will open a Firefox browser (it will need to be installed on the machine running the
test). When we write our test method, we’ll perform browser operations through the
FirefoxDriver instance. The FirefoxDriver is also configured to wait up to 10
seconds when looking for any elements on the page (in case those elements are slow
to load).

 After the test has completed, we’ll need to shut down the Firefox browser. There-
fore, closeBrowser() calls quit() on the FirefoxDriver instance to bring it down.

PICK YOUR BROWSER Although we’re testing with Firefox, Selenium also pro-
vides drivers for several other browsers, including Internet Explorer, Google’s
Chrome, and Apple’s Safari. Not only can you use other browsers, it’s probably
a good idea to write your tests to use any and all browsers you want to support.

Now we can write our test method. As a reminder, we want to load the home page, fill
in and submit the form, and then assert that we land on a page that includes our newly
added book in the list. The following listing shows how to do this with Selenium.

@Test
public void addBookToEmptyList() {

String baseUrl = "http://localhost:" + port;

browser.get(baseUrl);

assertEquals("You have no books in your book list",
browser.findElementByTagName("div").getText());

browser.findElementByName("title")

Listing 4.7 Testing the reading-list application with Selenium

Sets up Firefox
driver

Shuts down
browser

Fetches the
home page

Asserts an empty
book list

Licensed to Thomas Snead <n.ordickan@gmail.com>

90 CHAPTER 4 Testing with Spring Boot

.sendKeys("BOOK TITLE");
browser.findElementByName("author")

.sendKeys("BOOK AUTHOR");
browser.findElementByName("isbn")

.sendKeys("1234567890");
browser.findElementByName("description")

.sendKeys("DESCRIPTION");
browser.findElementByTagName("form")

.submit();

WebElement dl =
browser.findElementByCssSelector("dt.bookHeadline");

assertEquals("BOOK TITLE by BOOK AUTHOR (ISBN: 1234567890)",
dl.getText());

WebElement dt =
browser.findElementByCssSelector("dd.bookDescription");

assertEquals("DESCRIPTION", dt.getText());
}

The very first thing that the test method does is use the FirefoxDriver to perform a
GET request for the reading list’s home page. It then looks for a <div> element on the
page and asserts that its text indicates that no books are in the list.

 The next several lines look for the fields in the form and use the driver’s send-
Keys() method to simulate keystroke events on those field elements (essentially filling
in those fields with the given values). Finally, it looks for the <form> element and sub-
mits it.

 After the form submission is processed, the browser should land on a page with the
new book in the list. So the final few lines look for the <dt> and <dd> elements in that
list and assert that they contain the data that the test submitted in the form.

 When you run this test, you’ll see the browser pop up and load the reading-list
application. If you pay close attention, you’ll see the form filled out, as if by a ghost.
But it’s no spectre using your application—it’s the test.

 The main thing to notice about this test is that @WebIntegrationTest was able to
start up the application and server for us so that Selenium could start poking at it with
a web browser. But what’s especially interesting about how this works is that you can use
the test facilities of your IDE to run as many or as few of these tests as you want, without
having to rely on some plugin in your application’s build to start a server for you.

 If testing with Selenium is something that you think you’ll find useful, you should
check out Selenium WebDriver in Practice by Yujun Liang and Alex Collins (http://
manning.com/liang/), which goes into far more details about testing with Selenium.

4.4 Summary
Testing is an important part of developing quality software. Without a good suite of
tests, you’ll never know for sure if your application is doing what it’s expected to do.

 For unit tests, which focus on a single component or a method of a component,
Spring isn’t really necessary. The benefits and techniques promoted by Spring—loose

Fills in and
submits form

Asserts new
book in list

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://manning.com/liang/
http://manning.com/liang/

91Summary

coupling, dependency injection, and interface-driven design—make writing unit tests
easy. But Spring doesn’t need to be directly involved in unit tests.

 Integration-testing multiple components, however, begs for help from Spring. In
fact, if Spring is responsible for wiring those components up at runtime, then Spring
should also be responsible for wiring them up in integration tests.

 The Spring Framework provides integration-testing support in the form of a JUnit
class runner that loads a Spring application context and enables beans from the context
to be injected into a test. Spring Boot builds upon Spring integration-testing support
with a configuration loader that loads the application context in the same way as Spring
Boot itself, including support for externalized properties and Spring Boot logging.

 Spring Boot also enables in-container testing of web applications, making it possi-
ble to fire up your application to be served by the same container that it will be served
by when running in production. This gives your tests the closest thing to a real-world
environment for verifying the behavior of the application.

 At this point we’ve built a rather complete (albeit simple) application that lever-
ages Spring Boot starters and auto-configuration to handle the grunt work so that we
can focus on writing our application. And we’ve also seen how to take advantage of
Spring Boot’s support for testing the application. Coming up in the next couple of
chapters, we’re going to take a slightly different tangent and explore the ways that
Groovy can make developing Spring Boot applications even easier. We’ll start in the
next chapter by looking at a few features from the Grails framework that have made
their way into Spring Boot.

Licensed to Thomas Snead <n.ordickan@gmail.com>

92

Getting Groovy with
 the Spring Boot CLI

Some things go really well together. Peanut butter and jelly. Abbott and Costello.
Thunder and lightning. Milk and cookies. On their own, these things are great. But
when paired up, they’re even more awesome.

 So far, we’ve seen a lot of great things that Spring Boot has to offer, including
auto-configuration and starter dependencies. When paired up with the elegance of
the Groovy language, the result can be greater than the sum of its parts.

 In this chapter, we’re going to look at the Spring Boot CLI, a command-line tool
that brings the power of Spring Boot and Groovy together to form a simple and
compelling development tool for creating Spring applications. To demonstrate the
power of Spring Boot’s CLI, we’re going to rewind the reading-list application from
chapter 2, rewriting it from scratch in Groovy and taking advantage of the benefits
that the CLI has to offer.

This chapter covers
■ Automatic dependencies and imports
■ Grabbing dependencies
■ Testing CLI-based applications

Licensed to Thomas Snead <n.ordickan@gmail.com>

93Developing a Spring Boot CLI application

5.1 Developing a Spring Boot CLI application
Most development projects that target the JVM platform are developed in the Java lan-
guage and involve a build system such as Maven or Gradle to produce a deployable
artifact. In fact, the reading-list application we created in chapter 2 follows this model.

 The Java language has seen great improvements in recent versions. Even so, Java
has a few strict rules that add noise to the code. Line-ending semicolons, class and
method modifiers (such as public and private), getter and setter methods, and
import statements serve a purpose in Java, but they distract from the essentials of the
code. From a developer’s perspective, code noise is friction—friction when writing
code and even more friction when trying to read it. If some of this code noise could be
eliminated, it’d be easier to develop and read the code.

 Likewise, build systems such as Maven and Gradle serve a purpose in a project.
But build specifications are also one more thing that must be developed and main-
tained. If only there were a way to do away with the build, projects would be that
much simpler.

 When working with the Spring Boot CLI, there is no build specification. The code
itself serves as the build specification, providing hints that guide the CLI in resolving
dependencies and producing deployment artifacts. Moreover, by teaming up with
Groovy, the Spring Boot CLI offers a development model that eliminates almost all
code noise, producing a friction-free development experience.

 In the very simplest case, writing a CLI-based application could be as easy as writing
a single standalone Groovy script like the one we wrote in chapter 1. But when writing
a more complete application with the CLI, it makes sense to set up a basic project
structure to house the project code. That’s where we’ll get started with rewriting the
reading-list application.

5.1.1 Setting up the CLI project

The first thing we’ll do is create a directory structure to house the project. Unlike
Maven- and Gradle-based projects, Spring Boot CLI projects don’t have a strict project
structure. In fact, the simplest Spring Boot CLI app could be a single Groovy script liv-
ing in any directory in the filesystem. For the reading-list project, however, you should
create a fresh, clean directory to keep the code separate from anything else you keep
on your machine:

$ mkdir readinglist

Here I’ve named the directory “readinglist”, but feel free to name it however you wish.
The name isn’t as important as the fact that the project will have a place to live.

 We’ll need a couple of extra directories to hold the static web content and the
Thymeleaf template. Within the readinglist directory, create two new directories
named “static” and “templates”:

Licensed to Thomas Snead <n.ordickan@gmail.com>

94 CHAPTER 5 Getting Groovy with the Spring Boot CLI

$ cd readinglist
$ mkdir static
$ mkdir templates

It’s no coincidence that these directories are named the same as the directories we
created under src/main/resources in the Java-based project. Although Spring Boot
doesn’t enforce a project structure like Maven and Gradle do, Spring Boot will still
auto-configure a Spring ResourceHttpRequestHandler that looks for static content in
a directory named “static” (among other locations). It will also still configure Thyme-
leaf to resolve templates from a directory named “templates”.

 Speaking of static content and Thymeleaf templates, those files will be exactly the
same as the ones we created in chapter 2. So that you don’t have to worry about
remembering them later, go ahead and copy style.css into the static directory and
readingList.html into templates.

 At this point the reading-list project should be structured like this:

.
static

? style.css
??? templates

readingList.html

Now that the project is set up, we’re ready to start writing some Groovy code.

5.1.2 Eliminating code noise with Groovy

On its own, Groovy is a very elegant language. Unlike Java, Groovy doesn’t require
qualifiers such as public and private. Nor does it demand semicolons at the end of
each line. Moreover, thanks to Groovy’s simplified property syntax (“GroovyBeans”),
the JavaBean standard accessor methods are unnecessary.

 Consequently, writing the Book domain class in Groovy is extremely easy. Create a
new file at the root of the reading-list project named Book.groovy and write the follow-
ing Groovy class in it.

class Book {
Long id
String reader
String isbn
String title
String author
String description

}

As you can see, this Groovy class is a mere fraction of the size of its Java counterpart.
There are no setter or getter methods, no public or private modifiers, and no semi-
colons. The code noise that is so common in Java is squelched, and all that’s left is
what describes the essence of a book.

Licensed to Thomas Snead <n.ordickan@gmail.com>

95Developing a Spring Boot CLI application

Now that we’ve defined the Book domain class, let’s write the repository. First, let’s
write the ReadingListRepository interface (in ReadingListRepository.groovy):

interface ReadingListRepository {

List<Book> findByReader(String reader)

void save(Book book)

}

Aside from a clear lack of semicolons and no public modifier on the interface, the
Groovy version of ReadingListRepository isn’t much different from its Java counter-
part. The most significant difference is that it doesn’t extend JpaRepository because
we’re not working with Spring Data JPA in this chapter. And since we’re not using Spring
Data JPA, we’re going to have to write the implementation of ReadingListRepository
ourselves. The following listing shows what JdbcReadingListRepository.groovy
should look like.

@Repository
class JdbcReadingListRepository implements ReadingListRepository {

@Autowired

Listing 5.1 A Groovy and JDBC implementation of ReadingListRepository

JDBC vs. JPA in the Spring Boot CLI
One difference you may have noticed between this Groovy implementation of Book
and the Java implementation in chapter 2 is that there are no JPA annotations. That’s
because this time we’re going to use Spring’s JdbcTemplate to access the database
instead of Spring Data JPA.

There are a couple of very good reasons why I chose JDBC instead of JPA for this ex-
ample. First, by mixing things up a little, I can show off a few more auto-configuration
tricks that Spring Boot performs when working with Spring’s JdbcTemplate. But per-
haps the most important reason I chose JDBC is that Spring Data JPA requires a .class
file when generating on-the-fly implementations of repository interfaces. When you run
Groovy scripts via the command line, the CLI compiles the scripts in memory and
doesn’t produce .class files. Therefore, Spring Data JPA doesn’t work well when running
scripts through the CLI.

That said, the CLI isn’t completely incompatible with Spring Data JPA. If you use the
CLI’s jar command to package your application into a JAR file, the resulting JAR file
will contain compiled .class files for all of your Groovy scripts. Building and running a
JAR file from the CLI is a handy option when you want to deploy an application devel-
oped with the CLI, but it isn’t as convenient during development when you want to
see the results of your work quickly.

Licensed to Thomas Snead <n.ordickan@gmail.com>

96 CHAPTER 5 Getting Groovy with the Spring Boot CLI

JdbcTemplate jdbc

List<Book> findByReader(String reader) {
jdbc.query(

"select id, reader, isbn, title, author, description " +
"from Book where reader=?",
{ rs, row ->

new Book(id: rs.getLong(1),
reader: rs.getString(2),
isbn: rs.getString(3),
title: rs.getString(4),
author: rs.getString(5),
description: rs.getString(6))

} as RowMapper,
reader)

}

void save(Book book) {
jdbc.update("insert into Book " +

"(reader, isbn, title, author, description) " +
"values (?, ?, ?, ?, ?)",

book.reader,
book.isbn,
book.title,
book.author,
book.description)

}

}

For the most part, this is a typical JdbcTemplate-based repository implementation. It’s
injected, via autowiring, with a reference to a JdbcTemplate object that it uses to
query the database for books (in the findByReader() method) and to save books to
the database (in the save() method).

 By writing it in Groovy, we’re able to apply some Groovy idioms in the implementation.
For example, in findByReader(), a Groovy closure is given as a parameter in the call to
query() in place of a RowMapper implementation.1 Also, within the closure, a new Book
object is created using Groovy’s support for setting object properties at construction.

 While we’re thinking about database persistence, we also need to create a file
named schema.sql that will contain the SQL necessary to create the Book table that the
repository issues queries against:

create table Book (
id identity,
reader varchar(20) not null,
isbn varchar(10) not null,
title varchar(50) not null,
author varchar(50) not null,
description varchar(2000) not null

);

1 In fairness to Java, we can do something similar in Java 8 using lambdas (and method references).

Inject
JdbcTemplate

RowMapper
closure

Licensed to Thomas Snead <n.ordickan@gmail.com>

97Developing a Spring Boot CLI application

I’ll explain how schema.sql is used later. For now, just know that you need to create it
at the root of the classpath (at the root directory of the project) so that there will actu-
ally be a Book table to query against.

 All of the Groovy pieces are coming together, but there’s one more Groovy class we
must write to make the Groovy-ified reading-list application complete. We need to
write a Groovy implementation of ReadingListController to handle web requests
and serve the reading list to the browser. At the root of the project, create a file named
ReadingListController.groovy with the following content.

@Controller
@RequestMapping("/")
class ReadingListController {

String reader = "Craig"

@Autowired
ReadingListRepository readingListRepository

@RequestMapping(method=RequestMethod.GET)
def readersBooks(Model model) {
List<Book> readingList =

readingListRepository.findByReader(reader)

if (readingList) {
model.addAttribute("books", readingList)

}

"readingList"
}

@RequestMapping(method=RequestMethod.POST)
def addToReadingList(Book book) {
book.setReader(reader)
readingListRepository.save(book)
"redirect:/"

}

}

Comparing this version of ReadingListController with the one from chapter 2, it’s
easy to see that there’s a lot in common. The main difference, once again, is that
Groovy’s syntax does away with class and method modifiers, semicolons, accessor
methods, and other unnecessary code noise.

 You’ll also notice that both handler methods are declared with def rather than
String and both dispense with an explicit return statement. If you prefer explicit typ-
ing on the methods and explicit return statements, feel free to include them—
Groovy won’t mind.

Listing 5.2 ReadingListController handles web requests for displaying and adding

Inject
ReadingListRepository

Fetch
reading list

Populate model

Return view name

Save book

Redirect after POST

Licensed to Thomas Snead <n.ordickan@gmail.com>

98 CHAPTER 5 Getting Groovy with the Spring Boot CLI

 There’s one more thing we need to do before we can run the application. Create a
new file named Grabs.groovy and put these three lines in it:

@Grab("h2")
@Grab("spring-boot-starter-thymeleaf")
class Grabs {}

We’ll talk more about what this class does later. For now, just know that the @Grab
annotations on this class tell Groovy to fetch a few dependency libraries on the fly as
the application is started.

 Believe it or not, we’re ready to run the application. We’ve created a project direc-
tory, copied a stylesheet and Thymeleaf template into it, and filled it with Groovy code.
All that’s left is to run it with the Spring Boot CLI (from within the project directory):

$ spring run .

After a few seconds, the application should be fully started. Open your web browser
and navigate to http://localhost:8080. Assuming everything goes well, you should see
the same reading-list application you saw in chapter 2.

 Success! In just a few pages of this book, you’ve written a complete (albeit simple)
Spring application!

 At this point, however, you might be wondering how it works, considering that…

■ There’s no Spring configuration. How are the beans created and wired together?
Where does the JdbcTemplate bean come from?

■ There’s no build file. Where do the library dependencies like Spring MVC and
Thymeleaf come from?

■ There are no import statements. How can Groovy resolve types like JdbcTemplate
and RequestMapping if there are no import statements to specify what packages
they’re in?

■ We never deployed the app. Where’d the web server come from?

Indeed, the code we’ve written seems to be missing more than just a few semicolons.
How does this code even work?

5.1.3 What just happened?

As you’ve probably surmised, there’s more to Spring Boot’s CLI than just a convenient
means of writing Spring applications with Groovy. The Spring Boot CLI has several
tricks in its repertoire, including the following:

■ The CLI is able to leverage Spring Boot auto-configuration and starter depen-
dencies.

■ The CLI is able to detect when certain types are in use and automatically resolve
the appropriate dependency libraries to support those types.

■ The CLI knows which packages several commonly used types are in and, if those
types are used, adds those packages to Groovy’s default packages.

Licensed to Thomas Snead <n.ordickan@gmail.com>

99Developing a Spring Boot CLI application

■ By applying both automatic dependency resolution and auto-configuration, the
CLI can detect that it’s running a web application and automatically include an
embedded web container (Tomcat by default) to serve the application.

If you think about it, these are the most important features that the CLI offers. The
Groovy syntax is just a bonus!

 When you run the reading-list application through the Spring Boot CLI, several
things happen under the covers to make this magic work. One of the very first things the
CLI does is attempt to compile the Groovy code using an embedded Groovy compiler.
Without you knowing it, however, the code fails to compile due to several unknown types
in the code (such as JdbcTemplate, Controller, RequestMapping, and so on).

 But the CLI doesn’t give up. The CLI knows that JdbcTemplate can be added to
the classpath by adding the Spring Boot JDBC starter as a dependency. It also knows
that the Spring MVC types can be found by adding the Spring Boot web starter as a
dependency. So it grabs those dependencies from the Maven repository (Maven Cen-
tral, by default).

 If the CLI were to try to recompile at this point, it would still fail because of the
missing import statements. But the CLI also knows the packages of many commonly
used types. Taking advantage of the ability to customize the Groovy compiler’s default
package imports, the CLI adds all of the necessary packages to the Groovy compiler’s
default imports list.

 Now it’s time for the CLI to attempt another compile. Assuming there are no other
problems outside of the CLI’s abilities (such as syntax errors or types that the CLI
doesn’t know about), the code will compile cleanly and the CLI will run it via an inter-
nal bootstrap method similar to the main() method we put in Application for the Java-
based example.

 At this point, Spring Boot auto-configuration kicks in. It sees that Spring MVC is on
the classpath (as a result of the CLI resolving the web starter), so it automatically con-
figures the appropriate beans to support Spring MVC, as well as an embedded Tomcat
bean to serve the application. It also sees that JdbcTemplate is on the classpath, so it
automatically creates a JdbcTemplate bean, wiring it with a DataSource bean that was
also automatically created.

 Speaking of the DataSource bean, it’s just one of several other beans that are cre-
ated via Spring Boot auto-configuration. Spring Boot also automatically configures
beans that support Thymeleaf views in Spring MVC. This happens because we used
@Grab to add H2 and Thymeleaf to the classpath, which triggers auto-configuration
for an embedded H2 database and Thymeleaf.

 The @Grab annotation is an easy way to add dependencies that the CLI isn’t able to
automatically resolve. In spite of its ease of use, however, there’s more to this little
annotation than meets the eye. Let’s take a closer look at @Grab to see what makes it
tick, how the Spring Boot CLI makes it even easier by requiring only an artifact name
for many commonly used dependencies, and how to configure its dependency-
resolution process.

Licensed to Thomas Snead <n.ordickan@gmail.com>

100 CHAPTER 5 Getting Groovy with the Spring Boot CLI

5.2 Grabbing dependencies
In the case of Spring MVC and JdbcTemplate, Groovy compilation errors triggered
the Spring Boot CLI to go fetch the necessary dependencies and add them to the class-
path. But what if a dependency is required but there’s no failing code to trigger auto-
matic dependency resolution? Or what if the required dependency isn’t among the
ones the CLI knows about?

 In the reading-list example, we needed Thymeleaf libraries so that we could write
our views using Thymeleaf templates. And we needed the H2 database library so that
we could have an embedded H2 database. But because none of the Groovy code
directly referenced Thymeleaf or H2 classes, there were no compilation failures to
trigger them to be resolved automatically. Therefore, we had to help the CLI out a bit
by adding the @Grab dependencies in the Grabs class.

WHERE SHOULD YOU PLACE @GRAB? It’s not strictly necessary to put the @Grab
annotations in a separate class as we have. They would still do their magic had
we put them in ReadingListController or JdbcReadingListRepository.
For organization’s sake, however, it’s useful to create an otherwise empty class
definition that has all of the @Grab annotations. This makes it easy to view all
of the explicitly declared library dependencies in one place.

The @Grab annotation comes from Groovy’s Grape (Groovy Adaptable Packaging
Engine or Groovy Advanced Packaging Engine) facility. In a nutshell, Grape enables
Groovy scripts to download dependency libraries at runtime without using a build tool
like Maven or Gradle. In addition to providing the functionality behind the @Grab
annotation, Grape is also used by the Spring Boot CLI to fetch dependencies deduced
from the code.

 Using @Grab is as simple as expressing the dependency coordinates. For example,
suppose you want to add the H2 database to your project. Adding the following @Grab
to one of the project’s Groovy scripts will do just that:

@Grab(group="com.h2database", module="h2", version="1.4.190")

Used this way, the group, module, and version attributes explicitly specify the depen-
dency. Alternatively, you can express the same dependency more succinctly using a
colon-separated form similar to how dependencies can be expressed in a Gradle build
specification:

@Grab("com.h2database:h2:1.4.185")

These are two textbook examples of using @Grab. But the Spring Boot CLI extends
@Grab in a couple of ways to make working with @Grab even easier.

 First, for many dependencies it’s unnecessary to specify the version. Applying this
to the example of the H2 database dependency, it’s possible to express the depen-
dency with the following @Grab:

@Grab("com.h2database:h2")

Licensed to Thomas Snead <n.ordickan@gmail.com>

101Grabbing dependencies

The specific version of the dependency is determined by the version of the CLI that
you’re using. In the case of Spring Boot CLI 1.3.0.RELEASE, the H2 dependency
resolved will be 1.4.190.

 But that’s not all. For many commonly used dependencies, it’s also possible to
leave out the group ID, expressing the dependency by only giving the module ID to
@Grab. This is what enabled us to express the following @Grab for H2 in the previous
section:

@Grab("h2")

How can you know which dependencies require a group ID and version and which
you can grab using only the module ID? I’ve included a complete list of all the depen-
dencies the Spring Boot CLI knows about in appendix D. But generally speaking, it’s
easy enough to try @Grab dependencies with only a module ID first and then only
express the group ID and version if the module ID alone doesn’t work.

 Although it’s very convenient to express dependencies giving only their module
IDs, what if you disagree with the version chosen by Spring Boot? What if one of
Spring Boot’s starters transitively pulls in a certain version of a library, but you’d pre-
fer to use a newer version that contains a bug fix?

5.2.1 Overriding default dependency versions

Spring Boot brings a new @GrabMetadata annotation that can be used with @Grab to
override the default dependency versions in a properties file.

 To use @GrabMetadata, add it to one of the Groovy script files giving it the coordi-
nates for a properties file with the overriding dependency metadata:

@GrabMetadata(“com.myorg:custom-versions:1.0.0”)

This will load a properties file named custom-versions.properties from a Maven repos-
itory in the com/myorg directory. Each line in the properties file should have a group
ID and module ID as the key, and the version as the value. For example, to override
the default version for H2 with 1.4.186, you can point @GrabMetadata at a properties
file containing the following line:

com.h2database:h2=1.4.186

Using the Spring IO platform
One way you might want to use @GrabMetadata is to work with dependency versions
defined in the Spring IO platform (http://platform.spring.io/platform/). The Spring IO
platform offers a curated set of dependencies and versions aimed to give confidence
in knowing which versions of Spring and other libraries will work well together. The
dependencies and versions specified by the Spring IO platform is a superset of Spring
Boot’s set of known dependency libraries, and it includes several third-party libraries
that are frequently used in Spring applications.

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://platform.spring.io/platform/

102 CHAPTER 5 Getting Groovy with the Spring Boot CLI

One question you might have is where Grape fetches all of its dependencies from?
And is that configurable? Let’s see how you can manage the set of repositories that
Grape draws dependencies from.

5.2.2 Adding dependency repositories

By default, @Grab-declared dependencies are fetched from the Maven Central reposi-
tory (http://repo1.maven.org/maven2/). In addition, Spring Boot also registers
Spring’s milestone and snapshot repositories to be able to fetch pre-released depen-
dencies for Spring projects. For many projects, this is perfectly sufficient. But what if
your project needs a library that isn’t in Central or the Spring repositories? Or what if
you’re working within a corporate firewall and must use an internal repository?

 No problem. The @GrabResolver annotation enables you to specify additional
repositories from which dependencies can be fetched.

 For example, suppose you want to use the latest Hibernate release. Recent Hiber-
nate releases can only be found in the JBoss repository, so you’ll need to add that
repository via @GrabResolver:

@GrabResolver(name='jboss', root=
'https://repository.jboss.org/nexus/content/groups/public-jboss')

Here the resolver is named “jboss” with the name attribute. The URL to the repository
is specified in the root attribute.

 You’ve seen how Spring Boot’s CLI compiles your code and automatically resolves
several known dependency libraries as needed. And with support for @Grab to resolve
any dependencies that the CLI isn’t able to resolve automatically, CLI-based applica-
tions have no need for a Maven or Gradle build specification (as is required by tradi-
tionally developed Java applications). But resolving dependencies and compiling code
aren’t the only things that build processes do. Project builds also usually execute auto-
mated tests. If there’s no build specification, how do the tests run?

5.3 Running tests with the CLI
Tests are an important part of any software project, and they aren’t overlooked by the
Spring Boot CLI. Because CLI-based applications don’t involve a traditional build sys-
tem, the CLI offers a test command for running tests.

(continued)
If you’d like to build Spring Boot CLI applications on the Spring IO platform, you’ll just
need to annotate one of your Groovy scripts with the following @GrabMetadata:

@GrabMetadata('io.spring.platform:platform-versions:1.0.4.RELEASE')

This overrides the CLI’s set of default dependency versions with those defined by the
Spring IO platform.

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://repo1.maven.org/maven2/

103Running tests with the CLI

 Before you can try out the test command, you need to write a test. Tests can reside
anywhere in the project, but I recommend keeping them separate from the main
components of the project by putting them in a subdirectory. You can name the subdi-
rectory anything you want, but I chose to name it “tests”:

$ mkdir tests

Within the tests directory, create a new Groovy script named ReadingListController-
Test.groovy and write a test for the ReadingListController. To get started, listing 5.3
has a single test method for testing that the controller handles HTTP GET requests
properly.

import org.springframework.test.web.servlet.MockMvc
import static

org.springframework.test.web.servlet.setup.MockMvcBuilders.*
import static org.springframework.test.web.servlet.request.

MockMvcRequestBuilders.*
import static org.springframework.test.web.servlet.result.

MockMvcResultMatchers.*
import static org.mockito.Mockito.*

class ReadingListControllerTest {

@Test
void shouldReturnReadingListFromRepository() {
List<Book> expectedList = new ArrayList<Book>()
expectedList.add(new Book(

id: 1,
reader: "Craig",
isbn: "9781617292545",
title: "Spring Boot in Action",
author: "Craig Walls",
description: "Spring Boot in Action is ..."

))

def mockRepo = mock(ReadingListRepository.class)
when(mockRepo.findByReader("Craig")).thenReturn(expectedList)

def controller =
new ReadingListController(readingListRepository: mockRepo)

MockMvc mvc = standaloneSetup(controller).build()
mvc.perform(get("/"))

.andExpect(view().name("readingList"))

.andExpect(model().attribute("books", expectedList))
}

}

Listing 5.3 A Groovy test for ReadingListController

Mock
ReadingListRepository

Perform and test
GET request

Licensed to Thomas Snead <n.ordickan@gmail.com>

104 CHAPTER 5 Getting Groovy with the Spring Boot CLI

As you can see, this is a simple JUnit test that uses Spring’s support for mock MVC test-
ing to fire a GET request at the controller. It starts by setting up a mock implementa-
tion of ReadingListRepository that will return a single-entry list of Book. Then it
creates an instance of ReadingListController, injecting the mock repository into the
readingListRepository property. Finally, it sets up a MockMvc object, performs a GET
request, and asserts expectations with regard to the view name and model contents.

 But the specifics of the test aren’t as important here as how you run the test. Using
the CLI’s test command, you can execute the test from the command line like this:

$ spring test tests/ReadingListControllerTest.groovy

In this case, I’m explicitly selecting ReadingListControllerTest as the test to run. If
you have several tests within the tests/ directory and want to run them all, you can give
the directory name to the test command:

$ spring test tests

If you’re inclined to write Spock specifications instead of JUnit tests, you may be
pleased to know that the CLI’s test command can also execute Spock specifications,
as demonstrated by ReadingListControllerSpec in the following listing.

import org.springframework.test.web.servlet.MockMvc
import static

org.springframework.test.web.servlet.setup.MockMvcBuilders.*
import static org.springframework.test.web.servlet.request.

MockMvcRequestBuilders.*
import static org.springframework.test.web.servlet.result.

MockMvcResultMatchers.*
import static org.mockito.Mockito.*

class ReadingListControllerSpec extends Specification {

MockMvc mockMvc
List<Book> expectedList

def setup() {
expectedList = new ArrayList<Book>()
expectedList.add(new Book(

id: 1,
reader: "Craig",
isbn: "9781617292545",
title: "Spring Boot in Action",
author: "Craig Walls",
description: "Spring Boot in Action is ..."

))

def mockRepo = mock(ReadingListRepository.class)
when(mockRepo.findByReader("Craig")).thenReturn(expectedList)

Listing 5.4 A Spock specification to test ReadingListController

Mock
ReadingListRepository

Licensed to Thomas Snead <n.ordickan@gmail.com>

105Creating a deployable artifact

def controller =
new ReadingListController(readingListRepository: mockRepo)

mockMvc = standaloneSetup(controller).build()
}

def "Should put list returned from repository into model"() {
when:

def response = mockMvc.perform(get("/"))

then:
response.andExpect(view().name("readingList"))

.andExpect(model().attribute("books", expectedList))
}

}

ReadingListControllerSpec is a simple translation of ReadingListControllerTest
from a JUnit test into a Spock specification. As you can see, its one test very plainly
states that when a GET request is performed against “/”, then the response should
have a view named readingList and the expected list of books should be in the
model at the key books.

 Even though it’s a Spock specification, ReadingListControllerSpec can be run
with spring test tests the same way as a JUnit-based test.

 Once the code is written and the tests are all passing, you might want to deploy your
project. Let’s see how the Spring Boot CLI can help produce a deployable artifact.

5.4 Creating a deployable artifact
In conventional Java projects based on Maven or Gradle, the build system is responsi-
ble for producing a deployment unit; typically a JAR file or a WAR file. With Spring
Boot CLI, however, we’ve simply been running our application from the command
line with the spring command.

 Does that mean that if you want to deploy a Spring Boot CLI application you must
install the CLI on your server and fire up the application manually from the command
line? That seems awfully inconvenient (not to mention risky) when deploying to pro-
duction environments.

 We’ll talk more about options for deploying Spring Boot applications in chapter 8.
For now, though, let me show you one more trick that the CLI has up its sleeve. From
within the CLI-based reading-list application, issue the following at the command line:

$ spring jar ReadingList.jar .

This will package up the entire project, including all dependencies, Groovy, and an
embedded Tomcat, into a single executable JAR file. Once complete, you’ll be able to
run the app at the command line (without the CLI) like this:

$ java -jar ReadingList.jar

Perform GET
request

Test
results

Licensed to Thomas Snead <n.ordickan@gmail.com>

106 CHAPTER 5 Getting Groovy with the Spring Boot CLI

In addition to being run at the command line, the executable JAR can be deployed to
several Platform-as-a-Service (PaaS) cloud platforms including Pivotal Cloud Foundry
and Heroku. You’ll see how in chapter 8.

5.5 Summary
The Spring Boot CLI takes the simplicity offered by Spring Boot auto-configuration and
starter dependencies and turns it up a notch. Using the elegance of the Groovy lan-
guage, the CLI makes it possible to develop Spring applications with minimal code noise.

 In this chapter we completely rewrote the reading-list application from chapter 2.
But this time we developed it in Groovy as a Spring Boot CLI application. You saw how
the CLI makes Groovy even more elegant by automatically adding import statements
for many commonly used packages and types. And the CLI is also able to automatically
resolve several dependency libraries.

 For libraries that the CLI is unable to automatically resolve, CLI-based applications
can take advantage of the Grape @Grab annotation to explicitly declare dependencies
without a build specification. Spring Boot’s CLI extends @Grab so that, for many com-
monly needed library dependencies, you only need to declare the module ID.

 Finally, you also saw how to execute tests and build deployable artifacts, tasks com-
monly handled by build systems, with the Spring Boot CLI.

 Spring Boot and Groovy go well together, each boosting the other’s simplicity.
We’re going to take another look at how Spring Boot and Groovy play well together in
the next chapter as we explore how Spring Boot is at the core of the latest version of
Grails.

Licensed to Thomas Snead <n.ordickan@gmail.com>

107

Applying
 Grails in Spring Boot

When I was growing up, there was a series of television advertisements involving
two people, one enjoying a chocolate bar and another eating peanut butter out of a
jar. By way of some sort of comedic mishap, the two would collide, resulting in the
peanut butter and chocolate getting mixed.

 One would proclaim, “You got your chocolate in my peanut butter!” The other
would respond, “You got peanut butter on my chocolate!”

 After initially being angry with their circumstances, the two would conclude that
the combination of peanut butter and chocolate is a good thing. Then a voice-over
would suggest that the viewer should eat a Reese’s Peanut Butter Cup.

 From the moment that Spring Boot was announced, I’ve been frequently asked
how to choose between Spring Boot and Grails. Both are built upon the Spring
Framework and both help ease application development. Indeed, they’re very

This chapter covers
■ Persisting data with GORM
■ Defining GSP views
■ An introduction to Grails 3 and Spring Boot

Licensed to Thomas Snead <n.ordickan@gmail.com>

108 CHAPTER 6 Applying Grails in Spring Boot

much like peanut butter and chocolate. Both are great, but the choice is largely a per-
sonal one.

 As it turns out, there’s no reason to choose one or the other. Just like the chocolate
vs. peanut butter debate, Spring Boot and Grails are two great choices that work great
together.

 In this chapter, we’re going to look at the connection between Grails and Spring
Boot. We’ll start by looking at a few Grails features like GORM and Groovy Server
Pages (GSP) that are available in Spring Boot. Then we’ll flip it around and see how
Grails 3 has been reinvented by being built upon Spring Boot.

6.1 Using GORM for data persistence
Probably one of the most intriguing pieces of Grails is GORM (Grails object-relational
mapping). GORM makes database work as simple as declaring the entities that will be
persisted. For example, listing 6.1 shows how the Book entity from the reading-list
example could be written in Groovy as a GORM entity.

package readinglist

import grails.persistence.*

@Entity
class Book {

Reader reader
String isbn
String title
String author
String description

}

Just like its Java equivalent, this Book class has a handful of properties that describe a
book. Unlike the Java version, however, it’s not littered with semicolons, public or
private modifiers, setter and getter methods, or any of the other noise that’s com-
mon in Java. But what makes it a GORM entity is that it’s annotated with the @Entity
annotation from Grails. This simple entity does a lot, including mapping the object to
the database and enabling Book with persistence methods through which it can be
saved and retrieved.

 To use GORM with a Spring Boot project, all you must do is add the GORM depen-
dency to your build. In Maven, the <dependency> looks like this:

<dependency>
<groupId>org.grails</groupId>
<artifactId>gorm-hibernate4-spring-boot</artifactId>
<version>1.1.0.RELEASE</version>

</dependency>

Listing 6.1 A GORM Book entity

This is a GORM
entity

Licensed to Thomas Snead <n.ordickan@gmail.com>

109Using GORM for data persistence

The same dependency can be expressed in a Gradle build like this:

compile("org.grails:gorm-hibernate4-spring-boot:1.1.0.RELEASE")

This library carries some Spring Boot auto-configuration with it that will automatically
configure all of the necessary beans to support working with GORM. All you need to
do is start writing the code.

Due to the nature of how GORM works, it requires that at least the entity class be writ-
ten in Groovy. We’ve already written the Book entity in listing 6.1. As for the Reader
entity, it’s shown in the following listing.

package readinglist

import grails.persistence.*

import org.springframework.security.core.GrantedAuthority
import

org.springframework.security.core.authority.SimpleGrantedAuthority
import org.springframework.security.core.userdetails.UserDetails

@Entity
class Reader implements UserDetails {

String username
String fullname
String password

Collection<? extends GrantedAuthority> getAuthorities() {

Listing 6.2 A GORM Reader entity

Another GORM option for Spring Boot
As its name suggests, the gorm-hibernate4-spring-boot dependency enables
GORM for data persistence via Hibernate. For many projects, this will be fine. If, how-
ever, you’re interested in working with the MongoDB document database, you’ll be
pleased to know that GORM for MongoDB is also available for Spring Boot.

The Maven dependency looks like this:

<dependency>
<groupId>org.grails</groupId>
<artifactId>gorm-mongodb-spring-boot</artifactId>
<version>1.1.0.RELEASE</version>

</dependency>

Likewise, the Gradle dependency is as follows:

compile("org.grails:gorm-mongodb-spring-boot:1.1.0.RELEASE")

This is
an entity

Licensed to Thomas Snead <n.ordickan@gmail.com>

110 CHAPTER 6 Applying Grails in Spring Boot

Arrays.asList(new SimpleGrantedAuthority("READER"))
}

boolean isAccountNonExpired() {
true

}

boolean isAccountNonLocked() {
true

}

boolean isCredentialsNonExpired() {
true

}

boolean isEnabled() {
true

}

}

Now that we’ve written the two GORM entities for the reading-list application, we’ll
need to rewrite the rest of the app to use them. Because working with Groovy is such a
pleasant experience (and very Grails-like), we’ll continue writing the other classes in
Groovy as well.

 First up is ReadingListController, as shown next.

package readinglist

import org.springframework.beans.factory.annotation.Autowired
import

org.springframework.boot.context.properties.ConfigurationProperties
import org.springframework.http.HttpStatus
import org.springframework.stereotype.Controller
import org.springframework.ui.Model
import org.springframework.web.bind.annotation.ExceptionHandler
import org.springframework.web.bind.annotation.RequestMapping
import org.springframework.web.bind.annotation.RequestMethod
import org.springframework.web.bind.annotation.ResponseStatus

@Controller
@RequestMapping("/")
@ConfigurationProperties("amazon")
class ReadingListController {

@Autowired
AmazonProperties amazonProperties

@ExceptionHandler(value=RuntimeException.class)
@ResponseStatus(value=HttpStatus.BANDWIDTH_LIMIT_EXCEEDED)
def error() {

Listing 6.3 A Groovy reading-list controller

Implement
UserDetails

Licensed to Thomas Snead <n.ordickan@gmail.com>

111Using GORM for data persistence

"error"
}

@RequestMapping(method=RequestMethod.GET)
def readersBooks(Reader reader, Model model) {
List<Book> readingList = Book.findAllByReader(reader)
model.addAttribute("reader", reader)
if (readingList) {

model.addAttribute("books", readingList)
model.addAttribute("amazonID", amazonProperties.getAssociateId())

}
"readingList"

}

@RequestMapping(method=RequestMethod.POST)
def addToReadingList(Reader reader, Book book) {
Book.withTransaction {

book.setReader(reader)
book.save()

}
"redirect:/"

}

}

The most obvious difference between this version of ReadingListController and
the one from chapter 3 is that it’s written in Groovy and lacks much of the code noise
from Java. But the most significant difference is that it doesn’t work with an injected
ReadingListRepository anymore. Instead, it works directly with the Book type
for persistence.

 In the readersBooks() method, it calls the static findAllByReader() method on
Book to fetch all books for the given reader. Although we didn’t write a findAllBy-
Reader() method in listing 6.1, this will work because GORM will implement it for us.

 Likewise, the addToReadingList() method uses the static withTransaction() and
the instance save() methods, both provided by GORM, to save a Book to the database.

 And all we had to do was declare a few properties and annotate Book with @Entity.
A pretty good payoff, if you ask me.

 A similar change must be made to SecurityConfig to fetch a Reader via GORM
rather than using ReadingListRepository. The following listing shows the new
Groovy SecurityConfig.

package readinglist

import org.springframework.context.annotation.Configuration
import org.springframework.security.config.annotation.authentication.

builders.AuthenticationManagerBuilder
import org.springframework.security.config.annotation.web.

builders.HttpSecurity

Listing 6.4 SecurityConfig in Groovy

Find all
reader books

Save a
book

Licensed to Thomas Snead <n.ordickan@gmail.com>

112 CHAPTER 6 Applying Grails in Spring Boot

import org.springframework.security.config.annotation.web.
configuration.WebSecurityConfigurerAdapter

import org.springframework.security.core.userdetails.UserDetailsService

@Configuration
class SecurityConfig extends WebSecurityConfigurerAdapter {

void configure(HttpSecurity http) throws Exception {
http

.authorizeRequests()
.antMatchers("/").access("hasRole('READER')")
.antMatchers("/**").permitAll()

.and()

.formLogin()
.loginPage("/login")
.failureUrl("/login?error=true")

}

void configure(AuthenticationManagerBuilder auth) throws Exception {
auth

.userDetailsService(
{ username -> Reader.findByUsername(username) }
as UserDetailsService)

}

}

Aside from being rewritten in Groovy, the most significant change in SecurityConfig
is the second configure() method. As you can see, it uses a closure (as the implemen-
tation of UserDetailsService) that looks up a Reader by calling the static findBy-
Username() method, which is provided by GORM.

 You may be wondering what becomes of ReadingListRepository in this GORM-
enabled application. With GORM handling all of the persistence for us, ReadingList-
Repository is no longer needed. Neither are any of its implementations. I think you’ll
agree that less code is a good thing.

 As for the remaining code in the application, it should also be rewritten in Groovy
to match the classes we’ve changed thus far. But none of it deals with GORM and is
therefore out of scope for this chapter. The complete Groovy application is available
in the example code download.

 At this point, you can fire up the reading-list application using any of the ways
we’ve already discussed for running Spring Boot applications. Once it starts, the appli-
cation should work as it always has. Only you and I know that the persistence mecha-
nism has been changed.

 In addition to GORM, Grails apps usually use Groovy Server Pages to render model
data as HTML served to the browser. The Grails-ification of our application continues
in the next section, where we’ll replace the Thymeleaf templates with equivalent GSP.

Find a reader
by username

Licensed to Thomas Snead <n.ordickan@gmail.com>

113Defining views with Groovy Server Pages

6.2 Defining views with Groovy Server Pages
Up until now, we’ve been using Thymeleaf templates to define the view for the reading-
list application. In addition to Thymeleaf, Spring Boot also offers Freemarker, Velocity,
and Groovy-based templates. For any of those choices, all you must do is add the appro-
priate starter to your build and start writing templates in the templates/ directory at the
root of the classpath. Auto-configuration takes care of the rest.

 The Grails project also offers auto-configuration for Groovy Server Pages (GSP). If
you want to use GSP in your Spring Boot application, all you must do is add the GSP
for Spring Boot library to your build:

compile("org.grails:grails-gsp-spring-boot:1.0.0")

Just like the other view template options offered by Spring Boot, simply having this
library in your classpath triggers auto-configuration that sets up the view resolvers nec-
essary for GSP to work as the view layer of Spring MVC.

 All that’s left is to write the GSP templates for your application. For the reading-list
application, we’ll need to rewrite the Thymeleaf readingList.html file in GSP form as
readingList.gsp (in src/main/resources/templates). The following listing shows the
new GSP-enabled reading-list template.

<!DOCTYPE html>
<html>

<head>
<title>Reading List</title>
<link rel="stylesheet" href="/style.css"></link>

</head>

<body>
<h2>Your Reading List</h2>

<g:if test="${books}">
<g:each in="${books}" var="book">

<dl>
<dt class="bookHeadline">

${book.title} by ${book.author}
(ISBN: ${book.isbn}")

</dt>
<dd class="bookDescription">

<g:if test="book.description">
${book.description}

</g:if>
<g:else>

No description available
</g:else>

</dd>
</dl>

</g:each>

Listing 6.5 The reading-list app’s main view written in GSP

List the
books

Licensed to Thomas Snead <n.ordickan@gmail.com>

114 CHAPTER 6 Applying Grails in Spring Boot

</g:if>
<g:else>

<p>You have no books in your book list</p>
</g:else>

<hr/>

<h3>Add a book</h3>

<form method="POST">
<label for="title">Title:</label>
<input type="text" name="title"

value="${book?.title}"/>

<label for="author">Author:</label>
<input type="text" name="author"

value="${book?.author}"/>

<label for="isbn">ISBN:</label>
<input type="text" name="isbn"

value="${book?.isbn}"/>

<label for="description">Description:</label>

<textarea name="description" rows="5" cols="80">

${book?.description}
</textarea>
<input type="hidden" name="${_csrf.parameterName}"

value="${_csrf.token}" />
<input type="submit" value="Add Book" />

</form>

</body>
</html>

As you can see, the GSP template is sprinkled with expression language references
(the parts wrapped in ${}) and tags from the GSP tag library such as <g:if> and
<g:each>. It’s not quite pure HTML as is the case with Thymeleaf, but it’s a familiar
and comfortable option if you’re used to working with JSP.

 For the most part, it’s rather straightforward to map the elements on this GSP tem-
plate with the corresponding Thymeleaf templates from chapters 2 and 3. One thing
to note, however, is that you have to put in a hidden field to carry the CSRF (Cross-Site
Request Forgery) token. Spring Security requires this token on POST requests, and
Thymeleaf is able to automatically include it in the rendered HTML. With GSP, how-
ever, you must explicitly include the CSRF token in a hidden field.

 Figure 6.1 shows the results of the GSP rendered as HTML in the browser after a
few books have been entered.

 Although Grails features like GORM and GSP are appealing and go a long way
toward making a Spring Boot application even simpler, it’s not quite the complete
Grails experience. We’ve seen how to put a little Grails chocolate in the Spring Boot
peanut butter. Now we’ll turn it around and see how Grails 3 gives you the best of both
worlds: a development experience that’s both fully Spring Boot and fully Grails.

The book
form

The CSRF
token

Licensed to Thomas Snead <n.ordickan@gmail.com>

115Mixing Spring Boot with Grails 3

6.3 Mixing Spring Boot with Grails 3
Grails has always been a higher-level framework built upon the giants of Spring,
Groovy, Hibernate, and others. With Grails 3, Grails is now built upon Spring Boot,
enabling a very compelling developer experience that makes both Grails developers
and Spring Boot developers feel at home.

 The first step toward working with Grails 3 is to install it. On Mac OS X and most
Unix systems, the easiest way to install Grails is to use SDKMAN at the command line:

$ sdk install grails

If you’re using Windows or otherwise can’t use SDKMAN, you’ll need to download the
binary distribution, unzip it, and add the bin directory to your system path.

 Whichever installation choice you use, you can verify the installation by checking
the Grails version at the command line:

$ grails -version

Assuming the installation went well, you’re now ready to start creating a Grails project.

Figure 6.1 The reading list rendered from a GSP template

Licensed to Thomas Snead <n.ordickan@gmail.com>

116 CHAPTER 6 Applying Grails in Spring Boot

6.3.1 Creating a new Grails project

The grails command-line tool is what you’ll use to perform many tasks with a Grails
project, including the initial creation of the project. To kick off the reading-list appli-
cation project, use grails like this:

$ grails create-app readinglist

As its name suggests, the create-app command
creates a new application project. In this case, the
name of the project is “readinglist”.

 Once the grails tool has created the applica-
tion, cd into the readinglist directory and take
a look at what was created. Figure 6.2 shows a
high-level view of what the project structure
should look like.

 You should recognize a few familiar entries in
the project’s directory structure. There’s a Gradle
build specification and configuration (build.gra-
dle and gradle.properties). There’s also a stan-
dard Gradle project structure under the src
directory. But grails-app is the most interesting
directory in the project. If you’ve ever worked
with any previous version of Grails, you’ll know
what this directory is for. It’s where you’ll write
the controllers, domain types, and other code
that makes up the Grails project.

 If you dig a little deeper and open up the build.gradle file, you’ll find a few more famil-
iar items. To start with, the build specification uses the Spring Boot plugin for Gradle:

apply plugin: "spring-boot"

This means that you’ll be able to build and run the Grails application just as you
would any other Spring Boot application.

 You’ll also notice that there are a handful of Spring Boot libraries among the other
dependencies:

dependencies {
compile 'org.springframework.boot:spring-boot-starter-logging'
compile("org.springframework.boot:spring-boot-starter-actuator")
compile "org.springframework.boot:spring-boot-autoconfigure"
compile "org.springframework.boot:spring-boot-starter-tomcat"
...

}

This provides your Grails application with Spring Boot auto-configuration and log-
ging, as well as the Actuator and an embedded Tomcat to serve the application when
run as an executable JAR.

Figure 6.2 The directory structure of
a Grails 3 project

Licensed to Thomas Snead <n.ordickan@gmail.com>

117Mixing Spring Boot with Grails 3

 Indeed, this is a Spring Boot project. It’s also a Grails project. As of Grails 3, Grails
is built upon a foundation of Spring Boot.

RUNNING THE APPLICATION

The most straightforward way to run a Grails application is with the run-app com-
mand of the grails tool at the command line:

$ grails run-app

Even though we’ve not written a single line of code, we’re already able to run the
application and view it in the browser. Once the application starts up, you can navi-
gate to http://localhost:8080 in your web browser. You should see something similar
to what’s shown in figure 6.3.

Figure 6.3 Running a freshly created Grails application

Licensed to Thomas Snead <n.ordickan@gmail.com>

118 CHAPTER 6 Applying Grails in Spring Boot

The run-app command is the Grails way of running the application and has been the
way to run Grails applications for years, even in previous versions of Grails. But
because this Grails 3 project’s Gradle specification uses the Spring Boot plugin for
Gradle, you can also run the application using any of the means available to a Spring
Boot project. This includes the bootRun task via Gradle:

$ gradle bootRun

You can also build the project and run the resulting executable JAR file:

$ gradle build
...
$ java -jar build/lib/readingList-0.1.jar

Of course, the WAR file produced by the build can also be deployed to a servlet 3.0
container of your choice.

 It’s very convenient to be able to run the application this early in the development
process. It helps you know that the project has been properly initialized. But the appli-
cation doesn’t do much interesting yet. It’s up to us to build upon the initial project.
We’ll start by defining the domain.

6.3.2 Defining the domain

The central domain type in the reading-list application is the Book class. Although we
could manually create a Book.groovy file, it’s usually better to use the grails tool to
create domain types. That’s because it knows where the source files go and it’s also
able to generate any related artifacts for us at the same time.

 To create the Book class, we’ll use the create-domain-class command of the
grails tool:

$ grails create-domain-class Book

This will generate two source files: a Book.groovy file and a BookSpec.groovy file. The
latter is a Spock specification for testing the Book class. It’s initially empty, but you can
fill it with any tests you need to verify the functionality of a Book.

 The Book.groovy file defines the Book class itself. You’ll find it in grails-app/
domain/readingList. Initially, it’s rather empty and looks like this:

package readinglist
class Book {

static constraints = {
}

}

We’ll need to add the fields that define a book, such as the title, author, and ISBN.
After adding the fields, Book.groovy looks like this:

Licensed to Thomas Snead <n.ordickan@gmail.com>

119Mixing Spring Boot with Grails 3

package readinglist
class Book {

static constraints = {
}

String reader
String isbn
String title
String author
String description

}

The static constraints variable is where you can define any validation constraints to
be enforced on instances of Book. In this chapter, we’re primarily interested in build-
ing out the reading-list application to see how it’s built upon Spring Boot and not so
much on validation. Therefore, we’ll leave the constraints empty. Feel free to add
constraints if you wish, though. Have a look at Grails in Action, Second Edition, by Glen
Smith and Peter Ledbrook (Manning, 2014) for more information.1

 For the purpose of working with Grails, we’re going to keep the reading-list appli-
cation simple and in line with what we wrote in chapter 2. Therefore, we’ll forego cre-
ating a Reader domain and go ahead and create the controller.

6.3.3 Writing a Grails controller

As with domain types, it’s easy to create controllers using the grails tool. In the case
of controllers, you have a few choices of commands, however:

■ create-controller—Creates an empty controller, leaving it to the developer
to write the controller’s functionality

■ generate-controller—Generates a controller with scaffolded CRUD opera-
tions for a given domain type

■ generate-all—Generates a scaffolded CRUD controller and associated views
for a given domain type

Although scaffolded controllers are very handy and are certainly one of the most well-
known features of Grails, we’re going to keep it simple and write a controller that has
just enough functionality to mimic the behavior of the application we created in chap-
ter 2. Therefore, we’ll use the create-controller command to create a bare-bones
controller and then fill it in with the methods we need:

$ grails create-controller ReadingList

This command creates a controller named ReadingListController in grails-app/
controllers/readingList that looks like this:

1 Although Grails in Action, Second Edition, covers Grails 2, much of what you learn about Grails 2 applies to
Grails 3.

Licensed to Thomas Snead <n.ordickan@gmail.com>

120 CHAPTER 6 Applying Grails in Spring Boot

package readinglist
class ReadingListController {

def index() { }
}

Without making any changes, this controller is ready to run, although it won’t do
much. At this point, it will handle requests whose path is /readingList and forward the
request to the view defined at grails-app/views/readingList/index.gsp (which doesn’t
yet exist, but we’ll create soon).

 But what we need our controller to do is display a list of books and a form to add a
new book. We also need it to handle the form submission and save a book to the data-
base. The following listing shows the ReadingListController that we need.

package readinglist

import static org.springframework.http.HttpStatus.*
import grails.transaction.Transactional

class ReadingListController {

def index() {
respond Book.list(params), model:[book: new Book()]

}

@Transactional
def save(Book book) {
book.reader = 'Craig'
book.save flush:true
redirect(action: "index")

}

}

Although it’s much shorter than the equivalent Java controller, this version of Reading-
ListController is almost completely functionally equivalent. It handles GET requests
for /readingList and fetches a list of books to be displayed. And when the form is sub-
mitted, it handles the POST request, saves the book, then redirects to the index action
(which is handled by the index() method).

 Incredibly, we’re almost finished with the Grails version of the reading-list applica-
tion. The only thing left is to create the view that displays the list of books and the form.

6.3.4 Creating the view

Grails applications typically use GSP templates for their views. You’ve already seen how
to use GSP in a Spring Boot application, so the template we need won’t be much dif-
ferent from the one in section 6.2.

Listing 6.6 Fleshing out the ReadingListController

Fetch books
into model

Save the
book

Licensed to Thomas Snead <n.ordickan@gmail.com>

121Mixing Spring Boot with Grails 3

 What we might want to do, however, is take advantage of the layout facilities
offered in Grails to apply a common design to all of the pages in the application. As
you can see in listing 6.7, it’s a rather straightforward and simple change.

<!DOCTYPE html>
<html>

<head>
<meta name="layout" content="main"/>
<title>Reading List</title>
<link rel="stylesheet"

href="/assets/main.css?compile=false" />
<link rel="stylesheet"

href="/assets/mobile.css?compile=false" />
<link rel="stylesheet"

href="/assets/application.css?compile=false" />
</head>

<body>
<h2>Your Reading List</h2>

<g:if test="${bookList && !bookList.isEmpty()}">
<g:each in="${bookList}" var="book">
<dl>

<dt class="bookHeadline">
${book.title} by ${book.author}
(ISBN: ${book.isbn}")

</dt>
<dd class="bookDescription">

<g:if test="${book.description}">
${book.description}
</g:if>
<g:else>
No description available
</g:else>

</dd>
</dl>
</g:each>

</g:if>
<g:else>

<p>You have no books in your book list</p>
</g:else>

<hr/>

<h3>Add a book</h3>

<g:form action="save">
<fieldset class="form">

<label for="title">Title:</label>
<g:field type="text" name="title" value="${book?.title}"/>

<label for="author">Author:</label>
<g:field type="text" name="author"

Listing 6.7 A Grails-ready GSP template, including layout

Use the main
layout

List the
books

The book
form

Licensed to Thomas Snead <n.ordickan@gmail.com>

122 CHAPTER 6 Applying Grails in Spring Boot

value="${book?.author}"/>

<label for="isbn">ISBN:</label>
<g:field type="text" name="isbn" value="${book?.isbn}"/>

<label for="description">Description:</label>

<g:textArea name="description" value="${book?.description}"

rows="5" cols="80"/>
</fieldset>
<fieldset class="buttons">

<g:submitButton name="create" class="save"
value="${message(code: 'default.button.create.label',

default: 'Create')}" />
</fieldset>
</g:form>

</body>
</html>

Within the <head> element we’ve removed the <link> tag that references our
stylesheet. In its place, we’ve put in a <meta> tag that references the “main” layout of
the Grails application. As a consequence, the application will take on the Grails look
and feel, as shown in figure 6.4, when you run it.

 Although the Grails style is more eye-catching than the simple stylesheet we’ve been
using, there is obviously still a little work to do to make the reading-list application look

Figure 6.4 The reading-list application with the common Grails styling

Licensed to Thomas Snead <n.ordickan@gmail.com>

123Summary

good. And we’ll probably want to start making the application look a little less like Grails
and more like what we want our application to look like. Manipulating the application’s
stylesheets is well outside of the scope of this book, but if you’re interested in tweaking
the look and feel, you’ll find the stylesheets in the grails-app/assets/stylesheets directory.

6.4 Summary
Both Grails and Spring Boot aim to make developers’ lives easy, providing a greatly
simplified development model on top of Spring, so it may appear that these are com-
peting frameworks. But in this chapter, we’ve seen how to get the best of both worlds
by bringing Spring Boot and Grails together.

 We looked at how to add GORM and GSP views, two well-known Grails features, to
an otherwise typical Spring Boot application. GORM is an especially welcome feature
in Spring Boot, enabling you to perform persistence directly with the domain and
eliminating the need for a repository.

 Then we looked at Grails 3, the latest incarnation of Grails, built upon Spring
Boot. When developing a Grails 3 application, you’re also working with Spring Boot
and are afforded all of the features of Spring Boot, including auto-configuration.

 In all cases, both in this and the previous chapter, you’ve seen how mixing Groovy
and Spring Boot helps squelch the code noise that’s required in the Java language.

 Coming up in the next chapter, we’re going to shift our attention away from cod-
ing Spring Boot applications and look at the Spring Boot Actuator to see how it gives
us insights into the inner workings of our running applications.

Licensed to Thomas Snead <n.ordickan@gmail.com>

124

Taking a peek
 inside with the Actuator

Have you ever tried to guess what’s inside a wrapped gift? You shake it, weigh it, and
measure it. And you might even have a solid idea as to what’s inside. But until you
open it up, there’s no way of knowing for sure.

 A running application is kind of like a wrapped gift. You can poke at it and
make reasonable guesses as to what’s going on under the covers. But how can you
know for sure? If only there were some way that you could peek inside a running
application, see how it’s behaving, check on its health, and maybe even trigger
operations that influence how it runs?

 In this chapter, we’re going to explore Spring Boot’s Actuator. The Actuator
offers production-ready features such as monitoring and metrics to Spring Boot
applications. The Actuator’s features are provided by way of several REST endpoints,

This chapter covers
■ Actuator web endpoints
■ Adjusting the Actuator
■ Shelling into a running application
■ Securing the Actuator

Licensed to Thomas Snead <n.ordickan@gmail.com>

125Exploring the Actuator’s endpoints

a remote shell, and Java Management Extensions (JMX). We’ll start by looking at the
Actuator’s REST endpoints, which offer the most complete and well-known way of work-
ing with the Actuator.

7.1 Exploring the Actuator’s endpoints
The key feature of Spring Boot’s Actuator is that it provides several web endpoints in
your application through which you can view the internals of your running applica-
tion. Through the Actuator, you can find out how beans are wired together in the
Spring application context, determine what environment properties are available to
your application, get a snapshot of runtime metrics, and more.

 The Actuator offers a baker’s dozen of endpoints, as described in table 7.1.

To enable the Actuator endpoints, all you must do is add the Actuator starter to your
build. In a Gradle build specification, that dependency looks like this:

compile 'org.springframework.boot:spring-boot-starter-actuator'

Table 7.1 Actuator endpoints

HTTP method Path Description

GET /autoconfig Provides an auto-configuration report describing what auto-
configuration conditions passed and failed.

GET /configprops Describes how beans have been injected with configuration
properties (including default values).

GET /beans Describes all beans in the application context and their
relationship to each other.

GET /dump Retrieves a snapshot dump of thread activity.

GET /env Retrieves all environment properties.

GET /env/{name} Retrieves a specific environment value by name.

GET /health Reports health metrics for the application, as provided by
HealthIndicator implementations.

GET /info Retrieves custom information about the application, as pro-
vided by any properties prefixed with info.

GET /mappings Describes all URI paths and how they’re mapped to control-
lers (including Actuator endpoints).

GET /metrics Reports various application metrics such as memory usage
and HTTP request counters.

GET /metrics/{name} Reports an individual application metric by name.

POST /shutdown Shuts down the application; requires that
endpoints.shutdown.enabled be set to true.

GET /trace Provides basic trace information (timestamp, headers, and
so on) for HTTP requests.

Licensed to Thomas Snead <n.ordickan@gmail.com>

126 CHAPTER 7 Taking a peek inside with the Actuator

For a Maven build, the required dependency is as follows:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>

</dependency>

Or, if you’re using the Spring Boot CLI, the following @Grab should do the trick:

@Grab('spring-boot-starter-actuator')

No matter which technique you use to add the Actuator to your build, auto-configuration
will kick in when the application is running and you enable the Actuator.

 The endpoints in table 7.1 can be organized into three distinct categories: configu-
ration endpoints, metrics endpoints, and miscellaneous endpoints. Let’s take a look at
each of these endpoints, starting with the endpoints that provide insight into the con-
figuration of your application.

7.1.1 Viewing configuration details

One of the most common complaints lodged against Spring component-scanning and
autowiring is that it’s hard to see how all of the components in an application are
wired together. Spring Boot auto-configuration makes this problem even worse, as
there’s even less Spring configuration. At least with explicit configuration, you could
look at the XML file or the configuration class and get an idea of the relationships
between the beans in the Spring application context.

 Personally, I’ve never had this concern. Maybe it’s because I realize that before
Spring came along there wasn’t any map of the components in my applications.

 Nevertheless, if it concerns you that auto-configuration hides how beans are wired
up in the Spring application context, then I have some good news! The Actuator has
endpoints that give you that missing application component map as well as some
insight into the decisions that auto-configuration made when populating the Spring
application context.

GETTING A BEAN WIRING REPORT

The most essential endpoint for exploring an application’s Spring context is the /beans
endpoint. This endpoint returns a JSON document describing every single bean in the
application context, its Java type, and any of the other beans it’s injected with. By per-
forming a GET request to /beans (http://localhost:8080/beans when running locally),
you’ll be given information similar to what’s shown in the following listing.

[
{
"beans": [

{

Listing 7.1 The /beans endpoint exposes the beans in the Spring application context

Licensed to Thomas Snead <n.ordickan@gmail.com>

127Exploring the Actuator’s endpoints

"bean": "application",
"dependencies": [],
"resource": "null",
"scope": "singleton",
"type": "readinglist.Application$$EnhancerBySpringCGLIB$$f363c202"

},
{

"bean": "amazonProperties",
"dependencies": [],
"resource": "URL [jar:file:/../readinglist-0.0.1-SNAPSHOT.jar!

 /readinglist/AmazonProperties.class]",
"scope": "singleton",
"type": "readinglist.AmazonProperties"

},
{

"bean": "readingListController",
"dependencies": [

"readingListRepository",
"amazonProperties"

],
"resource": "URL [jar:file:/../readinglist-0.0.1-SNAPSHOT.jar!

/readinglist/ReadingListController.class]",
"scope": "singleton",
"type": "readinglist.ReadingListController"

},
{

"bean": "readerRepository",
"dependencies": [

"(inner bean)#219df4f5",
"(inner bean)#2c0e7419",
"(inner bean)#7d86037b",
"jpaMappingContext"

],
"resource": "null",
"scope": "singleton",
"type": "readinglist.ReaderRepository"

},
{

"bean": "readingListRepository",
"dependencies": [

"(inner bean)#98ce66",
"(inner bean)#1fd7add0",
"(inner bean)#59faabb2",
"jpaMappingContext"

],
"resource": "null",
"scope": "singleton",
"type": "readinglist.ReadingListRepository"

},
...

],
"context": "application",
"parent": null

}
]

Bean ID

Resource file

Dependencies

Bean scope

Java type

Licensed to Thomas Snead <n.ordickan@gmail.com>

128 CHAPTER 7 Taking a peek inside with the Actuator

Listing 7.1 is an abridged listing of the beans from the reading-list application. As you
can see, all of the bean entries carry five pieces of information about the bean:

■ bean—The name or ID of the bean in the Spring application context
■ resource—The location of the physical .class file (often a URL into the built

JAR file, but this might vary depending on how the application is built and run)
■ dependencies—A list of bean IDs that this bean is injected with
■ scope—The bean’s scope (usually singleton, as that is the default scope)
■ type—The bean’s Java type

Although the beans report doesn’t draw a specific picture of how the beans are wired
together (for example, via properties or constructor arguments), it does help you visu-
alize the relationships of the beans in the application context. Indeed, it would be rea-
sonably easy to write a utility that processes the beans report and produces a graphical
representation of the bean relationships. Be aware, however, that the full bean report
includes many beans, including many auto-configured beans, so such a graphic could
be quite busy.

EXPLAINING AUTO-CONFIGURATION

Whereas the /beans endpoint produces a report telling you what beans are in the
Spring application context, the /autoconfig endpoint might help you figure out why
they’re there—or not there.

 As mentioned in chapter 2, Spring Boot auto-configuration is built upon Spring
conditional configuration. It provides several configuration classes with @Conditional
annotations referencing conditions that decide whether or not beans should be auto-
matically configured. The /autoconfig endpoint provides a report of all the condi-
tions that are evaluated, grouping them by which conditions passed and which failed.

 Listing 7.2 shows an excerpt from the auto-configuration report produced for the
reading-list application with one passing and one failing condition.

{
"positiveMatches": {
...
"DataSourceAutoConfiguration.JdbcTemplateConfiguration

#jdbcTemplate": [
{

"condition": "OnBeanCondition",
"message": "@ConditionalOnMissingBean (types:

org.springframework.jdbc.core.JdbcOperations;
SearchStrategy: all) found no beans"

}
],
...
},
"negativeMatches": {
"ActiveMQAutoConfiguration": [

Listing 7.2 An auto-configuration report for the reading-list app

Successful conditions

Failed conditions

Licensed to Thomas Snead <n.ordickan@gmail.com>

129Exploring the Actuator’s endpoints

{
"condition": "OnClassCondition",
"message": "required @ConditionalOnClass classes not found:

javax.jms.ConnectionFactory,org.apache.activemq
.ActiveMQConnectionFactory"

}
],
...

}
}

In the positiveMatches section, you’ll find a condition used to decide whether or not
Spring Boot should auto-configure a JdbcTemplate bean. The match is named Data-
SourceAutoConfiguration.JdbcTemplateConfiguration#jdbcTemplate, which indi-
cates the specific configuration class where this condition is applied. The type of
condition is an OnBeanCondition, which means that the condition’s outcome is deter-
mined by the presence or absence of a bean. In this case, the message property makes
it clear that the condition checks for the absence of a bean of type JdbcOperations
(the interface that JbdcTemplate implements). If no such bean has already been con-
figured, then this condition passes and a JdbcTemplate bean will be created.

 Similarly, under negativeMatches, there’s a condition that decides whether or
not to configure an ActiveMQ. This decision is an OnClassCondition, and it hinges
on the presence of ActiveMQConnectionFactory in the classpath. Because
ActiveMQConnectionFactory isn’t in the classpath, the condition fails and ActiveMQ
will not be auto-configured.

INSPECTING CONFIGURATION PROPERTIES

In addition to knowing how your application beans are wired together, you might also
be interested in learning what environment properties are available and what configu-
ration properties were injected on the beans.

 The /env endpoint produces a list of all of the environment properties available to
the application, whether they’re being used or not. This includes environment vari-
ables, JVM properties, command-line parameters, and any properties provided in an
application.properties or application.yml file.

 The following listing shows an abridged example of what you might get from the
/env endpoint.

{
"applicationConfig: [classpath:/application.yml]": {
"amazon.associate_id": "habuma-20",
"error.whitelabel.enabled": false,
"logging.level.root": "INFO"

},
"profiles": [],
"servletContextInitParams": {},
"systemEnvironment": {

Listing 7.3 The /env endpoint reports all properties available

Application
properties

Environment
variables

Licensed to Thomas Snead <n.ordickan@gmail.com>

130 CHAPTER 7 Taking a peek inside with the Actuator

"BOOK_HOME": "/Users/habuma/Projects/BookProjects/walls6",
"GRADLE_HOME": "/Users/habuma/.sdkman/gradle/current",
"GRAILS_HOME": "/Users/habuma/.sdkman/grails/current",
"GROOVY_HOME": "/Users/habuma/.sdkman/groovy/current",
...

},
"systemProperties": {
"PID": "682",
"file.encoding": "UTF-8",
"file.encoding.pkg": "sun.io",
"file.separator": "/",
...

}
}

Essentially, any property source that can provide properties to a Spring Boot application
will be listed in the results of the /env endpoint along with the properties provided by
that endpoint.

 In listing 7.3, properties come from application configuration (application.yml),
Spring profiles, servlet context initialization parameters, the system environment, and
JVM system properties. (In this case, there are no profiles or servlet context initializa-
tion parameters.)

 It’s common to use properties to carry sensitive information such as database or
API passwords. To keep that kind of information from being exposed by the /env end-
point, any property named (or whose last segment is) “password”, “secret”, or “key”
will be rendered as “” in the response from /env. For example, if there’s a property
named “database.password”, it will be rendered in the /env response like this:

"database.password":"******"

The /env endpoint can also be used to request the value of a single property. Just
append the property name to /env when making the request. For example, request-
ing /env/amazon.associate_id will yield a response of “habuma-20” (in plain text)
when requested against the reading-list application.

 As you’ll recall from chapter 3, these environment properties come in handy when
using the @ConfigurationProperties annotation. Beans annotated with @Configu-
rationProperties can have their instance properties injected with values from the
environment. The /configprops endpoint produces a report of how those properties
are set, whether from injection or otherwise. Listing 7.4 shows an excerpt from the
configuration properties report for the reading-list application.

{
"amazonProperties": {
"prefix": "amazon",
"properties": {

"associateId": "habuma-20"

Listing 7.4 A configuration properties report

JVM system
properties

Amazon
configuration

Licensed to Thomas Snead <n.ordickan@gmail.com>

131Exploring the Actuator’s endpoints

}
},
...
"serverProperties": {
"prefix": "server",
"properties": {

"address": null,
"contextPath": null,
"port": null,
"servletPath": "/",
"sessionTimeout": null,
"ssl": null,
"tomcat": {

"accessLogEnabled": false,
"accessLogPattern": null,
"backgroundProcessorDelay": 30,
"basedir": null,
"compressableMimeTypes": "text/html,text/xml,text/plain",
"compression": "off",
"maxHttpHeaderSize": 0,
"maxThreads": 0,
"portHeader": null,
"protocolHeader": null,
"remoteIpHeader": null,
"uriEncoding": null

},
...

}
},
...

}

The first item in this excerpt is the amazonProperties bean we created in chapter 3. This
report tells us that it’s annotated with @ConfigurationProperties to have a prefix of
“amazon”. And it shows that the associateId property is set to “habuma-20”. This is
because in application.yml, we set the amazon.associateId property to “habuma-20”.

 You can also see an entry for serverProperties—it has a prefix of “server” and
several properties that we can work with. Here they all have default values, but you can
change any of them by setting a property prefixed with “server”. For example, you
could change the port that the server listens on by setting the server.port property.

 Aside from giving insight into how configuration properties are set in the running
application, this report is also useful as a quick reference showing all of the properties
that you could set. For example, if you weren’t sure how to set the maximum number
of threads in the embedded Tomcat server, a quick look at the configuration proper-
ties report would give you a clue that server.tomcat.maxThreads is the property
you’re looking to set.

PRODUCING ENDPOINT-TO-CONTROLLER MAP

When an application is relatively small, it’s usually easy to know how all of its controllers
are mapped to endpoints. But once the web interface exceeds more than a handful of

Server
configuration

Licensed to Thomas Snead <n.ordickan@gmail.com>

132 CHAPTER 7 Taking a peek inside with the Actuator

controllers and request-handling methods, it might be helpful to have a list of all of the
endpoints exposed by the application.

 The /mappings endpoint provides such a list. Listing 7.5 shows an excerpt of the
mappings report from the reading-list application.

{
...

"{[/],methods=[GET],params=[],headers=[],consumes=[],produces=[],
custom=[]}": {

"bean": "requestMappingHandlerMapping",
"method": "public java.lang.String readinglist.ReadingListController.

readersBooks(readinglist.Reader,org.springframework.ui.Model)"
},
"{[/],methods=[POST],params=[],headers=[],consumes=[],produces=[],

custom=[]}": {
"bean": "requestMappingHandlerMapping",
"method": "public java.lang.String readinglist.ReadingListController

.addToReadingList(readinglist.Reader,readinglist.
Book)"

},
"{[/autoconfig],methods=[GET],params=[],headers=[],consumes=[]

,produces=[],custom=[]}": {
"bean": "endpointHandlerMapping",
"method": "public java.lang.Object org.springframework.boot

.actuate.endpoint.mvc.EndpointMvcAdapter.invoke()"
},
...

}

Here we see a handful of endpoint mappings. The key for each mapping is a string
containing what appears to be the attributes of Spring MVC’s @RequestMapping anno-
tation. Indeed, this string gives you a good idea of how the controller is mapped, even
if you haven’t seen the source code. The value of each mapping has two properties:
bean and method. The bean property identifies the name of the Spring bean that the
mapping comes from. The method property gives the fully qualified method signature
of the method for which the mapping is being reported.

 The first two mappings are for the request-handing methods in our application’s
ReadingListController. The first shows that an HTTP GET request for the root path
(“/”) will be handled by the readersBooks() method. The second shows that a POST
request is mapped to the addToReadingList() method.

 The next mapping is for an Actuator-provided endpoint. An HTTP GET request for
the /autoconfig endpoint will be handled by the invoke() method of Spring Boot’s
EndpointMvcAdapter class. There are, of course, many other Actuator endpoints that
aren’t shown in listing 7.5, but those were omitted from the listing for brevity’s sake.

Listing 7.5 The controller/endpoint mappings for the reading-list app

ReadingListController
mappings

Auto-configuration
report mapping

Licensed to Thomas Snead <n.ordickan@gmail.com>

133Exploring the Actuator’s endpoints

 The Actuator’s configuration endpoints are great for seeing how your application
is configured. But it’s also interesting and useful to see what’s actually happening
within your application while it’s running. The metrics endpoints help give a snapshot
into an application’s runtime internals.

7.1.2 Tapping runtime metrics

When you go to the doctor for a physical exam, the doctor performs a battery of tests
to see how your body is performing. Some of them, such as determining your blood
type, are important but will not change over time. These kinds of tests give the doctor
insight into how your body is configured. Other tests give the doctor a snapshot into
how your body is performing during the visit. Your heart rate, blood pressure, and
cholesterol level are useful in helping the doctor evaluate your health. These metrics
are temporal and likely to change over time, but they’re still helpful runtime metrics.

 Similarly, taking a snapshot of the runtime metrics is helpful in evaluating the
health of an application. The Actuator offers a handful of endpoints that enable you
to perform a quick checkup on your application while it’s running. Let’s take a look at
them, starting with the /metrics endpoint.

VIEWING APPLICATION METRICS

There are a lot of interesting and useful bits of information about any running appli-
cation. Knowing the application’s memory circumstances (available vs. free), for
instance, might help you decide if you need to give the JVM more or less memory to work
with. For a web application, it can be helpful knowing at a glance, without scouring web
server log files, if there are any requests that are failing or taking too long to serve.

 The /metrics endpoint provides a snapshot of various counters and gauges in a
running application. The following listing shows a sample of what the /metrics end-
point might give you.

{
mem: 198144,
mem.free: 144029,
processors: 8,
uptime: 1887794,
instance.uptime: 1871237,
systemload.average: 1.33251953125,
heap.committed: 198144,
heap.init: 131072,
heap.used: 54114,
heap: 1864192,
threads.peak: 21,
threads.daemon: 19,
threads: 21,
classes: 9749,
classes.loaded: 9749,
classes.unloaded: 0,

Listing 7.6 The metrics endpoint provides several useful pieces of runtime data

Licensed to Thomas Snead <n.ordickan@gmail.com>

134 CHAPTER 7 Taking a peek inside with the Actuator

gc.ps_scavenge.count: 22,
gc.ps_scavenge.time: 122,
gc.ps_marksweep.count: 2,
gc.ps_marksweep.time: 156,
httpsessions.max: -1,
httpsessions.active: 1,
datasource.primary.active: 0,
datasource.primary.usage: 0,
counter.status.200.beans: 1,
counter.status.200.env: 1,
counter.status.200.login: 3,
counter.status.200.metrics: 2,
counter.status.200.root: 6,
counter.status.200.star-star: 9,
counter.status.302.login: 3,
counter.status.302.logout: 1,
counter.status.302.root: 5,
gauge.response.beans: 169,
gauge.response.env: 165,
gauge.response.login: 3,
gauge.response.logout: 0,
gauge.response.metrics: 2,
gauge.response.root: 11,
gauge.response.star-star: 2

}

As you can see, a lot of information is provided by the /metrics endpoint. Rather
than examine these metrics line by line, which would be tedious, table 7.2 groups
them into categories by the type of information they offer.

Table 7.2 Gauges and counters reported by the /metrics endpoint

Category Prefix What it reports

Garbage
collector

gc.* The count of garbage collections that have occurred and the
elapsed garbage collection time for both the mark-sweep and
scavenge garbage collectors (from java.lang
.management.GarbageCollectorMXBean)

Memory mem.* The amount of memory allotted to the application and the
amount of memory that is free (from java.lang.Runtime)

Heap heap.* The current memory usage (from java.lang
.management.MemoryUsage)

Class
loader

classes.* The number of classes that have been loaded and unloaded by
the JVM class loader (from java.lang.management
.ClassLoadingMXBean)

System processors
uptime
instance.uptime
systemload.average

System information such as the number of processors (from
java.lang.Runtime), uptime (from java.lang
.management.RuntimeMXBean), and average system
load (from java.lang.management
.OperatingSystemMXBean)

Licensed to Thomas Snead <n.ordickan@gmail.com>

135Exploring the Actuator’s endpoints

Notice that some of these metrics, such as the data source and Tomcat session metrics,
are only available if the necessary components are in play in the running application.
You can also register your own custom application metrics, as you’ll see in section 7.4.3.

 The HTTP counters and gauges demand a bit more explanation. The number fol-
lowing the counter.status prefix is the HTTP status code. What follows that is the
path requested. For instance, the metric named counter.status.200.metrics indi-
cates the number of times that the /metrics endpoint was served with an HTTP status
of 200 (OK).

 The HTTP gauges are similarly structured but report a different kind of metrics.
They’re all prefixed with gauge.response, indicating that they are gauges for HTTP
responses. Following that prefix is the path that the gauge refers to. The value of the
metric indicates the time in milliseconds that it took to serve that path the most recent
time it was served. For instance, the gauge.response.beans metric in table 7.6 indi-
cates that it took 169 milliseconds to serve that request the last time it was served.

 You’ll notice that there are a few special cases for the counter and gauge paths.
The root path refers to the root path or /. And star-star is a catchall that refers to
any path that Spring determines is a static resource, including images, JavaScript, and
stylesheets. It also includes any resource that can’t be found, which is why you’ll often
see a counter.status.404.star-star metric indicating the count of requests that
were met with HTTP 404 (NOT FOUND) status.

 Whereas the /metrics endpoint fetches a full set of all available metrics, you may
only be interested in a single metric. To fetch only one metric value, append the met-
ric’s key to the URL path when making the request. For example, to fetch only the
amount of free memory, perform a GET request for /metrics/mem.free:

$ curl localhost:8080/metrics/mem.free
144029

Thread
pool

threads.* The number of threads, daemon threads, and the peak count
of threads since the JVM started (from java.lang
.management.ThreadMXBean)

Data
source

datasource.* The number of data source connections (from the data
source’s metadata and only available if there are one or more
DataSource beans in the Spring application context)

Tomcat
sessions

httpsessions.* The active and maximum number of sessions in Tomcat (from
the embedded Tomcat bean and only available if the applica-
tion is served via an embedded Tomcat server)

HTTP counter.status.*
gauge.response.*

Various gauges and counters for HTTP requests that the appli-
cation has served

Table 7.2 Gauges and counters reported by the /metrics endpoint (continued)

Category Prefix What it reports

Licensed to Thomas Snead <n.ordickan@gmail.com>

136 CHAPTER 7 Taking a peek inside with the Actuator

It may be useful to know that even though the result from /metrics/{name} appears
to be plain text, the Content-Type header in the response is set to “application/
json;charset=UTF-8”. Therefore, it can be processed as JSON if you need to do so.

TRACING WEB REQUESTS

Although the /metrics endpoint gives you some basic counters and timers for web
requests, those metrics lack any details. Sometimes it can be helpful, especially when
debugging, to know more about the requests that were handled. That’s where the
/trace endpoint can be handy.

 The /trace endpoint reports details of all web requests, including details such as
the request method, path, timestamp, and request and response headers. Listing 7.7
shows an excerpt of the /trace endpoint’s output containing a single request trace
entry.

[
...
{
"timestamp": 1426378239775,
"info": {

"method": "GET",
"path": "/metrics",
"headers": {

"request": {
"accept": "*/*",
"host": "localhost:8080",
"user-agent": "curl/7.37.1"

},
"response": {

"X-Content-Type-Options": "nosniff",
"X-XSS-Protection": "1; mode=block",
"Cache-Control":

"no-cache, no-store, max-age=0, must-revalidate",
"Pragma": "no-cache",
"Expires": "0",
"X-Frame-Options": "DENY",
"X-Application-Context": "application",
"Content-Type": "application/json;charset=UTF-8",
"Transfer-Encoding": "chunked",
"Date": "Sun, 15 Mar 2015 00:10:39 GMT",
"status": "200"

}
}

}
}

]

As indicated by the method and path properties, you can see that this trace entry is for
a /metrics request. The timestamp property (as well as the Date header in the

Listing 7.7 The /trace endpoint records web request details

Licensed to Thomas Snead <n.ordickan@gmail.com>

137Exploring the Actuator’s endpoints

response) tells you when the request was handled. The headers property carries
header details for both the request and the response.

 Although listing 7.7 only shows a single trace entry, the /trace endpoint will report
trace details for the 100 most recent requests, including requests for the /trace
endpoint itself. It maintains the trace data in an in-memory trace repository. Later, in
section 7.4.4, you’ll see how to create a custom trace repository implementation for a
more permanent tracing of requests.

DUMPING THREAD ACTIVITY

In addition to request tracing, thread activity can also be useful in determining what’s
going on in a running application. The /dump endpoint produces a snapshot of cur-
rent thread activity.

[
{
"threadName": "container-0",
"threadId": 19,
"blockedTime": -1,
"blockedCount": 0,
"waitedTime": -1,
"waitedCount": 64,
"lockName": null,
"lockOwnerId": -1,
"lockOwnerName": null,
"inNative": false,
"suspended": false,
"threadState": "TIMED_WAITING",
"stackTrace": [

{
"className": "java.lang.Thread",
"fileName": "Thread.java",
"lineNumber": -2,
"methodName": "sleep",
"nativeMethod": true

},
{

"className": "org.apache.catalina.core.StandardServer",
"fileName": "StandardServer.java",
"lineNumber": 407,
"methodName": "await",
"nativeMethod": false

},
{

"className": "org.springframework.boot.context.embedded.
tomcat.TomcatEmbeddedServletContainer$1",

"fileName": "TomcatEmbeddedServletContainer.java",
"lineNumber": 139,
"methodName": "run",
"nativeMethod": false

}

Listing 7.8 The /dump endpoint provides a snapshot of an application’s threads

Licensed to Thomas Snead <n.ordickan@gmail.com>

138 CHAPTER 7 Taking a peek inside with the Actuator

],
"lockedMonitors": [],
"lockedSynchronizers": [],
"lockInfo": null

},
...

]

The complete thread dump report includes every thread in the running application.
To save space, listing 7.8 shows an abridged entry for a single thread. As you can see, it
includes details regarding the blocking and locking status of the thread, among other
thread specifics. There’s also a stack trace that, in this case, indicates the thread is a
Tomcat container thread.

MONITORING APPLICATION HEALTH

If you’re ever wondering if your application is up and running or not, you can easily
find out by requesting the /health endpoint. In the simplest case, the /health end-
point reports a simple JSON structure like this:

{"status":"UP"}

The status property reports that the application is up. Of course it is. It doesn’t really
matter what the response is; any response at all is an indication that the application is
running. But the /health endpoint has more information than a simple “UP” status.

 Some of the information offered by the /health endpoint can be sensitive, so unau-
thenticated requests are only given the simple health status response. If the request is
authenticated (for example, if you’re logged in), more health information is exposed.
Here’s some sample health information reported for the reading-list application:

{
"status":"UP",
"diskSpace": {
"status":"UP",
"free":377423302656,
"threshold":10485760

},
"db":{
"status":"UP",
"database":"H2",
"hello":1

}
}

Along with the basic health status, you’re also given information regarding the
amount of available disk space and the status of the database that the application is
using.

 All of the information reported by the /health endpoints is provided by one or
more health indicators, including those listed in table 7.3, that come with Spring
Boot.

Licensed to Thomas Snead <n.ordickan@gmail.com>

139Exploring the Actuator’s endpoints

These health indicators will be automatically configured as needed. For example, Data-
SourceHealthIndicator will be automatically configured if javax.sql.DataSource
is available in the classpath. ApplicationHealthIndicator and DiskSpaceHealth-
Indicator will always be configured.

 In addition to these out-of-the-box health indicators, you’ll see how to create cus-
tom health indicators in section 7.4.5.

7.1.3 Shutting down the application

Suppose you need to kill your running application. In a microservice architecture, for
instance, you might have multiple instances of a microservice application running in
the cloud. If one of those instances starts misbehaving, you might decide to shut it
down and let the cloud provider restart the failed application for you. In that sce-
nario, the Actuator’s /shutdown endpoint will prove useful.

 In order to shut down your application, you can send a POST request to /shutdown.
For example, you can shut down your application using the curl command-line tool
like this:

$ curl -X POST http://localhost:8080/shutdown

Table 7.3 Spring Boot’s out-of-the-box health indicators

Health indicator Key Reports

ApplicationHealthIndicator none Always “UP”

DataSourceHealthIndicator db “UP” and database type if the database can be
contacted; “DOWN” status otherwise

DiskSpaceHealthIndicator diskSpace “UP” and available disk space, and “UP” if avail-
able space is above a threshold; “DOWN” if there
isn’t enough disk space

JmsHealthIndicator jms “UP” and JMS provider name if the message bro-
ker can be contacted; “DOWN” otherwise

MailHealthIndicator mail “UP” and the mail server host and port if the mail
server can be contacted; “DOWN” otherwise

MongoHealthIndicator mongo “UP” and the MongoDB server version; “DOWN”
otherwise

RabbitHealthIndicator rabbit “UP” and the RabbitMQ broker version; “DOWN”
otherwise

RedisHealthIndicator redis “UP” and the Redis server version; “DOWN”
otherwise

SolrHealthIndicator solr “UP” if the Solr server can be contacted; “DOWN”
otherwise

Licensed to Thomas Snead <n.ordickan@gmail.com>

140 CHAPTER 7 Taking a peek inside with the Actuator

Obviously, the ability to shut down a running application is a dangerous thing, so it’s
disabled by default. Unless you’ve explicitly enabled it, you’ll get the following
response from the POST request:

{"message":"This endpoint is disabled"}

To enable the /shutdown endpoint, configure the endpoints.shutdown.enabled
property to true. For example, add the following lines to application.yml to enable
the /shutdown endpoint:

endpoints:
shutdown:
enabled: true

Once the /shutdown endpoint is enabled, you want to make sure that not just anybody
can kill your application. You should secure the /shutdown endpoint, requiring that
only authorized users are allowed to bring the application down. You’ll see how to
secure Actuator endpoints in section 7.5.

7.1.4 Fetching application information

Spring Boot’s Actuator has one more endpoint you might find useful. The /info end-
point reports any information about your application that you might want to expose
to callers. The default response to a GET request to /info looks like this:

{}

Obviously, an empty JSON object isn’t very useful. But you can add any information to
the /info endpoint’s response by simply configuring properties prefixed with info. For
example, suppose you want to provide a contact email in the /info endpoint response.
You could set a property named info.contactEmail like this in application.yml:

info:
contactEmail: support@myreadinglist.com

Now if you request the /info endpoint, you’ll get the following response:

{
"contactEmail":"support@myreadinglist.com"

}

Properties in the /info response can also be nested. For example, suppose that you
want to provide both a support email and a support phone number. In applica-
tion.yml, you might configure the following properties:

info:
contact:
email: support@myreadinglist.com
phone: 1-888-555-1971

Licensed to Thomas Snead <n.ordickan@gmail.com>

141Connecting to the Actuator remote shell

The JSON returned from the /info endpoint will include a contact property that
itself has email and phone properties:

{
"contact":{
"email":"support@myreadinglist.com",
"phone":"1-888-555-1971"

}
}

Adding properties to the /info endpoint is just one of many ways you can customize
Actuator behavior. Later in section 7.4, we’ll look at other ways that you can configure
and extend the Actuator. But first, let’s see how to secure the Actuator’s endpoints.

7.2 Connecting to the Actuator remote shell
You’ve seen how the Actuator provides some very useful information over REST
endpoints. An optional way to dig into the internals of a running application is by
way of a remote shell. Spring Boot integrates with CRaSH, a shell that can be
embedded into any Java application. Spring Boot also extends CRaSH with a handful
of Spring Boot-specific commands that offer much of the same functionality as the
Actuator’s endpoints.

 In order to use the remote shell, you’ll need to add the remote shell starter as a
dependency. The Gradle dependency you’ll need looks like this:

compile("org.springframework.boot:spring-boot-starter-remote-shell")

If you’re building your project with Maven, you’ll need the following dependency in
your pom.xml file:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-remote-shell</artifactId>

</dependency>

And if you’re developing an application to run with the Spring Boot CLI, the following
@Grab is what you’ll need:

@Grab("spring-boot-starter-remote-shell")

With the remote shell added as a dependency, you can now build and run the applica-
tion. As it’s starting up, watch for the password to be written to the log in a line that
looks something like this:

Using default security password: efe30c70-5bf0-43b1-9d50-c7a02dda7d79

The username that goes with that password is “user”. The password itself is randomly
generated and will be different each time you run the application.

Licensed to Thomas Snead <n.ordickan@gmail.com>

142 CHAPTER 7 Taking a peek inside with the Actuator

 Now you can use an SSH utility to connect to the shell, which is listening for con-
nections on port 2000. If you use the UNIX ssh command to connect to the shell, it
might look something like this:

~% ssh user@localhost -p 2000
Password authentication
Password:

. ____ _ __ _ _
/\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \

(()___ | '_ | '_| | '_ \/ _` | \ \ \ \
\\/ ___)| |_)| | | | | || (_| |))))
' |____| .__|_| |_|_| |___, | / / / /

=========|_|==============|___/=/_/_/_/
:: Spring Boot :: (v1.3.0.RELEASE) on habuma.local

>

Great! You’re connected to the shell. Now what?
 The remote shell offers almost two dozen commands that you can execute within

the context of the running application. Most of those commands come out of the box
with CRaSH, but Spring Boot adds a handful of commands. These Spring Boot-specific
commands are listed in table 7.4.

Table 7.4 CRaSH shell commands provided by Spring Boot

Let’s take a look at how to use each of the shell commands added by Spring Boot.

7.2.1 Viewing the autoconfig report

The autoconfig command produces a report that’s very similar to the report pro-
duced by the Actuator’s /autoconfig endpoint. Figure 7.1 shows an abridged screen-
shot of the output produced by the autoconfig command.

 As you can see, the results are split into two groups—positive matches and negative
matches—just like the results from the /autoconfig endpoint. In fact, the only signif-
icant difference is that the autoconfig command produces a textual report whereas
the /autoconfig endpoint produces JSON output. Otherwise, they are the same.

Command Description

autoconfig Produces an auto-configuration explanation report. Similar to the /autoconfig end-
point, except that the results are plain text instead of JSON.

beans Displays the beans in the Spring application context. Similar to the /beans endpoint.

endpoint Invokes an Actuator endpoint.

metrics Displays Spring Boot metrics. Similar to the /metrics endpoint, except presented
as a live list of metrics that’s updated as the values change.

Licensed to Thomas Snead <n.ordickan@gmail.com>

143Connecting to the Actuator remote shell

We’re not going to dwell on any of the shell commands provided natively by CRaSH,
but you might want to consider piping the results of the autoconfig command to
CRaSH’s less command:

> autoconfig | less

The less command is much like the same-named command in Unix shells; it enables
you to page back and forth through a file. The autoconfig output is lengthy, but pip-
ing it to less will make it easier to read and navigate.

7.2.2 Listing application beans

The output from the autoconfig shell command and the /autoconfig endpoint were
similar but different. In contrast, you’ll find that the results from the beans command are
exactly the same as those from the /beans endpoint, as the screenshot in figure 7.2 shows.

Figure 7.1 Output of autoconfig command

Licensed to Thomas Snead <n.ordickan@gmail.com>

144 CHAPTER 7 Taking a peek inside with the Actuator

Just like the /beans endpoint, the beans command produces a list of all beans in the
Spring application context, along with any dependency beans, in JSON format.

7.2.3 Watching application metrics

The metrics shell command produces the same information as the Actuator
/metrics endpoint. But unlike the /metrics endpoint, which produces a snapshot of
the current metrics in JSON format, the metrics command takes over the shell and
displays its results in a live dashboard. Figure 7.3 shows what the metrics dashboard
looks like.

Figure 7.2 Output of beans command

Figure 7.3 The metrics dashboard

Licensed to Thomas Snead <n.ordickan@gmail.com>

145Connecting to the Actuator remote shell

It’s difficult to demonstrate the live dashboard behavior of the metrics command
with a static figure in a book. But try to imagine that as memory, heap, and threads are
consumed and released and as classes are loaded, the numbers shown in the dash-
board will change to reflect the current values.

 Once you’re finished looking at the metrics offered by the metrics command,
press Ctrl-C to return to the shell.

7.2.4 Invoking Actuator endpoints

You’ve probably realized by now that not all of the Actuator’s endpoints have corre-
sponding commands in the shell. Does that mean that the shell can’t be a full replace-
ment for the Actuator endpoints? Will you still have to query the endpoints directly
for some of the internals offered by the Actuator? Although the shell doesn’t pair a
command up with each of the endpoints, the endpoint command enables you to
invoke Actuator endpoints from within the shell.

 First, you need to know which endpoint you want to invoke. You can get a list of
endpoints by issuing endpoint list at the shell prompt, as shown in figure 7.4. Notice
that the endpoints listed are referred to by their bean names, not by their URL paths.

 When you want to call one of the endpoints from the shell, you’ll use the endpoint
invoke command, giving it the endpoint’s bean name without the “Endpoint” suffix.
For example, to invoke the health endpoint, you’d issue endpoint invoke health at
the shell prompt, as shown in figure 7.5.

 Notice that the results coming back from the endpoint are in the form of a raw,
unformatted JSON document. Although it may be nice to be able to invoke the Actua-
tor’s endpoints from within the shell, the results can be a bit difficult to read. Out of the
box, there’s not much that can be done about that. But if you’re feeling adventurous,
you can create a custom CRaSH shell command that accepts the unformatted JSON via

Figure 7.4 Getting a list of endpoints

Licensed to Thomas Snead <n.ordickan@gmail.com>

146 CHAPTER 7 Taking a peek inside with the Actuator

a pipe and pretty-prints it. And you can always cut and paste it into a tool of your choos-
ing for further review or formatting.

7.3 Monitoring your application with JMX
In addition to the endpoints and the remote shell, the Actuator also exposes its end-
points as MBeans to be viewed and managed through JMX (Java Management Exten-
sions). JMX is an attractive option for managing your Spring Boot application,
especially if you’re already using JMX to manage other MBeans in your applications.

 All of the Actuator’s endpoints are exposed under the org.springframework.boot
domain. For example, suppose you want to view the request mappings for your appli-
cation. Figure 7.6 shows the request mapping endpoint as viewed in JConsole.

Figure 7.5 Invoking the health endpoint

Figure 7.6 Request mapping endpoint as viewed in JConsole

Licensed to Thomas Snead <n.ordickan@gmail.com>

147Monitoring your application with JMX

As you can see, the request mapping endpoint is found under requestMappingEnd-
point, which is under Endpoint in the org.springframework.boot domain. The Data
attribute contains the JSON reported by the endpoint.

 As with any MBean, the endpoint MBeans have operations that you can invoke.
Most of the endpoint MBeans only have accessor operations that return the value of
one of their attributes. But the shutdown endpoint offers a slightly more interesting
(and destructive!) operation, as shown in figure 7.7

If you ever need to shut down your application (or just like living dangerously), the
shutdown endpoint is there for you. As shown in figure 7.7, it’s waiting for you to click
the “shutdown” button to invoke the endpoint. Be careful, though—there’s no turn-
ing back or “Are you sure?” prompt.
The very next thing you’ll see is shown
in figure 7.8.

 After that, your application will
have been shut down. And because it’s
dead, there’s no way it could possibly
expose another MBean operation for
restarting it. You’ll have to restart it
yourself, the same way you started it in
the first place.

Figure 7.7 Shutdown button invokes the endpoint.

Figure 7.8 Application immediately shuts down.

Licensed to Thomas Snead <n.ordickan@gmail.com>

148 CHAPTER 7 Taking a peek inside with the Actuator

7.4 Customizing the Actuator
Although the Actuator offers a great deal of insight into the inner workings of a run-
ning Spring Boot application, it may not be a perfect fit for your needs. Maybe you
don’t need everything it offers and want to disable some of it. Or maybe you need to
extend it with metrics custom-suited to your application.

 As it turns out, the Actuator can be customized in several ways, including the
following:

■ Renaming endpoints
■ Enabling and disabling endpoints
■ Defining custom metrics and gauges
■ Creating a custom repository for storing trace data
■ Plugging in custom health indicators

We’re going to see how to customize the Actuator, bending it to meet our needs. We’ll
start with one of the simplest customizations: renaming the Actuator’s endpoints.

7.4.1 Changing endpoint IDs

Each of the Actuator endpoints has an ID that’s used to determine that endpoint’s
path. For example, the /beans endpoint has beans as its default ID.

 If an endpoint’s path is determined by its ID, then it stands to reason that you can
change an endpoint’s path by changing its ID. All you need to do is set a property
whose name is endpoints.endpoint-id.id.

 To demonstrate how this works, consider the /shutdown endpoint. It responds to
POST requests sent to /shutdown. Suppose, however, that you’d rather have it handle
POST requests sent to /kill. The following YAML shows how you might assign a new
ID, and therefore a new path, to the /shutdown endpoint:

endpoints:
shutdown:
id: kill

There are a couple of reasons you might want to rename an endpoint and change its
path. The most obvious is that you might simply want to name the endpoints to match
the terminology used by your team. But you might also think that renaming an end-
point will hide it from anyone who might be familiar with the default names, thus cre-
ating a sense of security by obscurity.

 Unfortunately, renaming an endpoint doesn’t really secure it. At best, it will only
slow down a hacker looking to gain access to an endpoint. We’ll look at how you can
secure Actuator endpoints in section 7.5. For now, let’s see how to completely disable
any (or all) endpoints that you don’t want anyone to have access to.

Licensed to Thomas Snead <n.ordickan@gmail.com>

149Customizing the Actuator

7.4.2 Enabling and disabling endpoints

Although all of the Actuator endpoints are useful, you may not want or need all of
them. By default, all of the endpoints (except for /shutdown) are enabled. We’ve
already seen how to enable the /shutdown endpoint by setting endpoints.shutdown
.enabled to true (in section 7.1.1). In the same way, you can disable any of the other
endpoints by setting endpoints._endpoint-id.enabled to false.

 For example, suppose you want to disable the /metrics endpoint. All you need to
do is set the endpoints.metrics.enabled property to false. In application.yml, that
would look like this:

endpoints:
metrics:
enabled: false

If you find that you only want to leave one or two of the endpoints enabled, it might
be easier to disable them all and then opt in to the ones you want to enable. For exam-
ple, consider the following snippet from application.yml:

endpoints:
enabled: false
metrics:
enabled: true

As shown here, all of the Actuator’s endpoints are disabled by setting endpoints.enabled
to false. Then the /metrics endpoint is re-enabled by setting endpoints.metrics
.enabled to true.

7.4.3 Adding custom metrics and gauges

In section 7.1.2, you saw how to use the /metrics endpoint to fetch information about
the internal metrics of a running application, including memory, garbage collection,
and thread metrics. Although these are certainly useful and informative metrics, you
may want to define custom metrics to capture information specific to your application.

 Suppose, for instance, that we want a metric that reports how many times a user
has saved a book to their reading list. The easiest way to capture this number is to
increment a counter every time the addToReadingList() method is called on
ReadingListController. A counter is simple enough to implement, but how
would you expose the running total along with the other metrics exposed by the
/metrics endpoint?

 Let’s also suppose that we want to capture a timestamp for the last time a book was
saved. We could easily capture that by calling System.currentTimeMillis(), but how
could we report that time in the /metrics endpoint?

Licensed to Thomas Snead <n.ordickan@gmail.com>

150 CHAPTER 7 Taking a peek inside with the Actuator

 As it turns out, the auto-configuration that enables the Actuator also creates an
instance of CounterService and registers it as a bean in the Spring application context.
CounterService is an interface that defines three methods for incrementing, decre-
menting, or resetting a named metric, as shown here:

package org.springframework.boot.actuate.metrics;

public interface CounterService {
void increment(String metricName);
void decrement(String metricName);
void reset(String metricName);

}

Actuator auto-configuration will also configure a bean of type GaugeService, an inter-
face similar to CounterService that lets you record a single value to a named gauge
metric. GaugeService looks like this:

package org.springframework.boot.actuate.metrics;

public interface GaugeService {
void submit(String metricName, double value);

}

We don’t need to implement either of these interfaces; Spring Boot already provides
implementations for them both. All we must do is inject the CounterService and
GaugeService instances into any other bean where they’re needed, and call the meth-
ods to update whichever metrics we want.

 For the metrics we want, we’ll need to inject the CounterService and GaugeService
beans into ReadingListController and call their methods from the addToReading-
List() method. Listing 7.9 shows the necessary changes to ReadingListController.

@Controller
@RequestMapping("/")
@ConfigurationProperties("amazon")
public class ReadingListController {

...

private CounterService counterService;

@Autowired
public ReadingListController(

ReadingListRepository readingListRepository,
AmazonProperties amazonProperties,
CounterService counterService,
GaugeService gaugeService) {

this.readingListRepository = readingListRepository;
this.amazonProperties = amazonProperties;
this.counterService = counterService;
this.gaugeService = gaugeService;

Listing 7.9 Using injected gauge and counter services

Inject the
counter and
gauge services

Licensed to Thomas Snead <n.ordickan@gmail.com>

151Customizing the Actuator

}

...

@RequestMapping(method=RequestMethod.POST)
public String addToReadingList(Reader reader, Book book) {
book.setReader(reader);
readingListRepository.save(book);

counterService.increment("books.saved");

gaugeService.submit(
"books.last.saved", System.currentTimeMillis());

return "redirect:/";
}

}

This change to ReadingListController uses autowiring to inject the CounterService
and GaugeService beans via the controller’s constructor, which then stores them in
instance variables. Then, each time that the addToReadingList() method handles a
request, it will call counterService.increment("books.saved") and gaugeService
.submit("books.last.saved") to adjust our custom metrics.

 Although CounterService and GaugeService are simple to use, there are some met-
rics that are hard to capture by incrementing a counter or recording a gauge value. For
those cases, we can implement the PublicMetrics interface and provide as many cus-
tom metrics as we want. The PublicMetrics interface defines a single metrics()
method that returns a collection of Metric objects:

package org.springframework.boot.actuate.endpoint;

public interface PublicMetrics {
Collection<Metric<?>> metrics();

}

To put PublicMetrics to work, suppose that we want to be able to report some metrics
from the Spring application context. The time when the application context was started
and the number of beans and bean definitions might be interesting metrics to include.
And, just for grins, let’s also report the number of beans that are annotated as @Con-
troller. Listing 7.10 shows the implementation of PublicMetrics that will do the job.

package readinglist;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.actuate.endpoint.PublicMetrics;
import org.springframework.boot.actuate.metrics.Metric;

Listing 7.10 Publishing custom metrics

Increment
“books.saved”

Record
“books.last.saved”

Licensed to Thomas Snead <n.ordickan@gmail.com>

152 CHAPTER 7 Taking a peek inside with the Actuator

import org.springframework.context.ApplicationContext;
import org.springframework.stereotype.Component;
import org.springframework.stereotype.Controller;

@Component
public class ApplicationContextMetrics implements PublicMetrics {

private ApplicationContext context;

@Autowired
public ApplicationContextMetrics(ApplicationContext context) {
this.context = context;

}

@Override
public Collection<Metric<?>> metrics() {
List<Metric<?>> metrics = new ArrayList<Metric<?>>();
metrics.add(new Metric<Long>("spring.context.startup-date",

context.getStartupDate()));

metrics.add(new Metric<Integer>("spring.beans.definitions",
context.getBeanDefinitionCount()));

metrics.add(new Metric<Integer>("spring.beans",
context.getBeanNamesForType(Object.class).length));

metrics.add(new Metric<Integer>("spring.controllers",
context.getBeanNamesForAnnotation(Controller.class).length));

return metrics;
}

}

The metrics() method will be called by the Actuator to get any custom metrics that
ApplicationContextMetrics provides. It makes a handful of calls to methods on the
injected ApplicationContext to fetch the numbers we want to report as metrics. For
each one, it creates an instance of Metric, specifying the metric’s name and the value,
and adds the Metric to the list to be returned.

 As a consequence of creating ApplicationContextMetrics as well as using Coun-
terService and GaugeService in ReadingListController, we get the following
entries in the response from the /metrics endpoint:

{
...
spring.context.startup-date: 1429398980443,
spring.beans.definitions: 261,
spring.beans: 272,
spring.controllers: 2,
books.count: 1,
gauge.books.save.time: 1429399793260,
...

}

Record
startup
date

Record bean
definition
count

Record bean
count

Record controller
bean count

Licensed to Thomas Snead <n.ordickan@gmail.com>

153Customizing the Actuator

Of course, the actual values for these metrics will vary, depending on how many books
you’ve added and the times when you started the application and last saved a book. In
case you’re wondering, spring.controllers is 2 because it’s counting ReadingList-
Controller as well as the Spring Boot–provided BasicErrorController.

7.4.4 Creating a custom trace repository

By default, the traces reported by the /trace endpoint are stored in an in-memory
repository that’s capped at 100 entries. Once it’s full, it starts rolling off older trace
entries to make room for new ones. This is fine for development purposes, but in a
production application the higher traffic may result in traces being discarded before
you ever get a chance to see them.

 One way to remedy that problem is to declare your own InMemoryTraceReposi-
tory bean and set its capacity to some value higher than 100. The following configura-
tion class should increase the capacity to 1000 entries:

package readinglist;
import org.springframework.boot.actuate.trace.InMemoryTraceRepository;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class ActuatorConfig {

@Bean
public InMemoryTraceRepository traceRepository() {
InMemoryTraceRepository traceRepo = new InMemoryTraceRepository();
traceRepo.setCapacity(1000);
return traceRepo;

}

}

Although a tenfold increase in the repository’s capacity should keep a few of those
trace entries around a bit longer, a sufficiently busy application might still discard
traces before you get a chance to review them. And because this is an in-memory trace
repository, we should be careful about increasing the capacity too much, as it will have
an impact on our application’s memory footprint.

 Alternatively, we could store those trace entries elsewhere—somewhere that’s not
consuming memory and that will be more permanent. All we need to do is implement
Spring Boot’s TraceRepository interface:

package org.springframework.boot.actuate.trace;
import java.util.List;
import java.util.Map;

public interface TraceRepository {
List<Trace> findAll();
void add(Map<String, Object> traceInfo);

}

Licensed to Thomas Snead <n.ordickan@gmail.com>

154 CHAPTER 7 Taking a peek inside with the Actuator

As you can see, TraceRepository only requires that we implement two methods: one
that finds all stored Trace objects and another that saves a Trace given a Map contain-
ing trace information.

 For demonstration purposes, perhaps we could create an instance of TraceRepos-
itory that stores trace entries in a MongoDB database. Listing 7.11 shows such an
implementation of TraceRepository.

package readinglist;
import java.util.Date;
import java.util.List;
import java.util.Map;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.actuate.trace.Trace;
import org.springframework.boot.actuate.trace.TraceRepository;
import org.springframework.data.mongodb.core.MongoOperations;
import org.springframework.stereotype.Service;

@Service
public class MongoTraceRepository implements TraceRepository {

private MongoOperations mongoOps;

@Autowired
public MongoTraceRepository(MongoOperations mongoOps) {
this.mongoOps = mongoOps;

}

@Override
public List<Trace> findAll() {
return mongoOps.findAll(Trace.class);

}

@Override
public void add(Map<String, Object> traceInfo) {
mongoOps.save(new Trace(new Date(), traceInfo));

}

}

The findAll() method is straightforward enough, asking the injected MongoOpera-
tions to find all Trace objects. The add() method is only slightly more interesting,
instantiating a Trace object given the current date/time and the Map of trace info
before saving it via MongoOperations.save(). The only question you might have is
where MongoOperations comes from.

 In order for MongoTraceRepository to work, we’re going to need to make sure
that we have a MongoOperations bean in the Spring application context. Thanks to
Spring Boot starters and auto-configuration, that’s simply a matter of adding the Mon-
goDB starter as a dependency. The Gradle dependency you need is as follows:

compile("org.springframework.boot:spring-boot-starter-data-mongodb")

Listing 7.11 Saving trace data to Mongo

Inject
MongoOperations

Fetch all trace
entries

Save a trace
entry

Licensed to Thomas Snead <n.ordickan@gmail.com>

155Customizing the Actuator

If your project is built with Maven, this is the dependency you’ll need:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-mongodb</artifactId>

</dependency>

By adding this starter, Spring Data MongoDB and supporting libraries will be added to
the application’s classpath. And because those are in the classpath, Spring Boot will
auto-configure the beans necessary to support working with a MongoDB database,
including a MongoOperations bean. The only other thing you’ll need to do is be sure
that there’s a MongoDB server running for MongoOperations to talk to.

7.4.5 Plugging in custom health indicators

As we’ve seen, the Actuator comes with a nice set of out-of-the-box health indicators
for common needs such as reporting the health of a database or message broker that
the application is using. But what if your application interacts with some system for
which there’s no health indicator?

 Because our application includes links to Amazon for books in the reading list, it
might be interesting to report whether or not Amazon is reachable. Sure, it’s not
likely that Amazon will go down, but stranger things have happened. So let’s create a
health indicator that reports whether Amazon is available. Listing 7.12 shows a
HealthIndicator implementation that should do the job.

package readinglist;
import org.springframework.boot.actuate.health.Health;
import org.springframework.boot.actuate.health.HealthIndicator;
import org.springframework.stereotype.Component;
import org.springframework.web.client.RestTemplate;

@Component
public class AmazonHealth implements HealthIndicator {

@Override
public Health health() {

try {
RestTemplate rest = new RestTemplate();
rest.getForObject("http://www.amazon.com", String.class);
return Health.up().build();

} catch (Exception e) {
return Health.down().build();

}
}

}

Listing 7.12 Defining a custom Amazon health indicator

Send
request to
Amazon

Report “down”
health

Licensed to Thomas Snead <n.ordickan@gmail.com>

156 CHAPTER 7 Taking a peek inside with the Actuator

The AmazonHealth class isn’t terribly fancy. The health() method simply uses
Spring’s RestTemplate to perform a GET request to Amazon’s home page. If it works,
it returns a Health object indicating that Amazon is “UP”. On the other hand, if an
exception is thrown while requesting Amazon’s home page, then health() returns a
Health object indicating that Amazon is “DOWN”.

 The following excerpt from the /health endpoint’s response shows what you
might see if Amazon is unreachable:

{
"amazonHealth": {

"status": "DOWN"
},
...

}

You wouldn’t believe how long I had to wait for Amazon to crash so that I could get
that result!1

 If you’d like to add additional information to the health record beyond a simple
status, you can do so by calling withDetail() on the Health builder. For example, to
add the exception’s message as a reason field in the health record, the catch block
could be changed to return a Health object created like this:

return Health.down().withDetail("reason", e.getMessage()).build();

As a result of this change, the health record might look like this when the request to
Amazon fails:

"amazonHealth": {
"reason": "I/O error on GET request for

\"http://www.amazon.com\":www.amazon.com;
nested exception is java.net.UnknownHostException:
www.amazon.com",

"status": "DOWN"
},

You can add as many additional details as you want by calling withDetail() for each
additional field you want included in the health record.

7.5 Securing Actuator endpoints
We’ve seen that many of the Actuator endpoints expose information that may be con-
sidered sensitive. And some, such as the /shutdown endpoint, are dangerous and can
be used to bring your application down. Therefore, it’s very important to be able to
secure these endpoints so that they’re only available to authorized clients.

 As it turns out, the Actuator endpoints can be secured the same way as any other
URL path: with Spring Security. In a Spring Boot application, this means adding the

1 Not really. I just disconnected my computer from the network. No network, no Amazon.

Licensed to Thomas Snead <n.ordickan@gmail.com>

157Securing Actuator endpoints

Security starter as a build dependency and letting security auto-configuration take
care of locking down the application, including the Actuator endpoints.

 In chapter 3, we saw how the default security auto-configuration results in all URL
paths being secured, requiring HTTP Basic authentication where the username is
“user” and the password is randomly generated at startup and written to the log file.
This was not how we wanted to secure the application, and it’s likely not how you want
to secure the Actuator either.

 We’ve already added some custom security configuration to restrict the root URL
path (/) to only authenticated users with READER access. To lock down Actuator end-
points, we’ll need to make a few changes to the configure() method in Security-
Config.java.

 Suppose, for instance, that we want to lock down the /shutdown endpoint, requir-
ing that the user have ADMIN access. Listing 7.13 shows the changes required in the
configure() method.

@Override
protected void configure(HttpSecurity http) throws Exception {

http
.authorizeRequests()

.antMatchers("/").access("hasRole('READER')")

.antMatchers("/shutdown").access("hasRole('ADMIN')")

.antMatchers("/**").permitAll()
.and()
.formLogin()

.loginPage("/login")

.failureUrl("/login?error=true");
}

Now the only way to access the /shutdown endpoint is to authenticate as a user with
ADMIN access.

 The custom UserDetailsService we created in chapter 3, however, is coded to only
apply READER access to users it looks up via the ReaderRepository. Therefore, you may
want to create a smarter UserDetailsService implementation that is able to apply
ADMIN access to some users. Optionally, you can configure an additional authentication
implementation, such as the in-memory authentication shown in listing 7.14.

@Override
protected void configure(

AuthenticationManagerBuilder auth) throws Exception {
auth
.userDetailsService(new UserDetailsService() {

@Override
public UserDetails loadUserByUsername(String username)

Listing 7.13 Securing the /shutdown endpoint

Listing 7.14 Adding an in-memory admin authentication user

Require ADMIN
access

Reader
authentication

Licensed to Thomas Snead <n.ordickan@gmail.com>

158 CHAPTER 7 Taking a peek inside with the Actuator

throws UsernameNotFoundException {
UserDetails user = readerRepository.findOne(username);
if (user != null) {

return user;
}
throw new UsernameNotFoundException(

"User '" + username + "' not found.");
}

})
.and()
.inMemoryAuthentication()

.withUser("admin").password("s3cr3t")
.roles("ADMIN", "READER");

}

With the in-memory authentication added, you can authenticate with “admin” as the
username and “s3cr3t” as the password and be granted both ADMIN and READER
access.

 Now the /shutdown endpoint is locked down for everyone except users with
ADMIN access. But what about the Actuator’s other endpoints? Assuming you want to
lock them down with ADMIN access as for /shutdown, you can list each of them in the
call to antMatchers(). For example, to lock down /metrics and /configprops as well
as /shutdown, call antMatchers() like this:

.antMatchers("/shutdown", "/metrics", "/configprops")
.access("hasRole('ADMIN')")

Although this approach will work, it’s only suitable if you want to secure a small subset
of the Actuator endpoints. It becomes unwieldy if you use it to lock down all of the
Actuator’s endpoints.

 Rather than explicitly list all of the Actuator endpoints when calling antMatchers(),
it’s much easier to use wildcards to match them all with a simple Ant-style expression.
This is challenging, however, because there’s not a lot in common between the endpoint
paths. And we can’t apply ADMIN access to “/**” because then everything except for the
root path (/) would require ADMIN access.

 Instead, consider setting the endpoint’s context path by setting the manage-
ment.context-path property. By default, this property is empty, which is why all of the
Actuator’s endpoint paths are relative to the root path. But the following entry in
application.yaml will prefix them all with /mgmt.

management:
context-path: /mgmt

Optionally, you can set it in application.properties like this:

management.context-path=/mgmt

Admin
authentication

Licensed to Thomas Snead <n.ordickan@gmail.com>

159Summary

With management.context-path set to /mgmt, all Actuator endpoints will be relative
to the /mgmt path. For example, the /metrics endpoint will be at /mgmt/metrics.

 With this new path, we now have a common prefix to work with when assigning
ADMIN access restriction to the Actuator endpoints:

.antMatchers("/mgmt/**").access("hasRole('ADMIN')")

Now all requests beginning with /mgmt, which includes all Actuator endpoints, will
require an authenticated user who has been granted ADMIN access.

7.6 Summary
It can be difficult to know for sure what’s going on inside a running application.
Spring Boot’s Actuator opens a portal into the inner workings of a Spring Boot appli-
cation, exposing components, metrics, and gauges to help understand what makes the
application tick.

 In this chapter, we started by looking at the Actuator’s web endpoints—REST end-
points that expose runtime details over HTTP. These include endpoints for viewing
all of the beans in the Spring application context, auto-configuration decisions,
Spring MVC mappings, thread activity, application health, and various metrics,
gauges, and counters.

 In addition to web endpoints, the Actuator also offers two alternative ways to dig
into the information it provides. The remote shell offers a way to securely shell into
the application itself and issue commands that expose much of the same data as the
Actuator’s endpoints. Meanwhile, all of the Actuator’s endpoints are exposed as
MBeans that can be monitored and managed by a JMX client.

 Next, we took a look at how to customize the Actuator. We saw how to change Actu-
ator endpoint paths by changing the endpoint IDs as well as how to enable and disable
endpoints. We also plugged in a few custom metrics and created a custom trace repos-
itory to replace the default in-memory trace repository.

 Finally, we looked at how to secure the Actuator’s endpoints, restricting access to
authorized users.

 Coming up in the next chapter, we’ll see how to take an application from the coding
phase to production, looking at how Spring Boot helps when deploying an application
to a variety of platforms, including traditional application servers and the cloud.

Licensed to Thomas Snead <n.ordickan@gmail.com>

160

Deploying Spring
 Boot applications

Think of your favorite action movie. Now imagine going to see that movie in the
theater and being taken on a thrilling audio-visual ride with high-speed chases,
explosions, and battles, only to have it come to a sudden end just before the good
guys take down the bad guys. Instead of seeing the movie’s conflict resolved, the
theater lights come on and everyone is ushered out the door.

 Although the lead-up was exciting, it’s the climax of the movie that’s important.
Without it, it’s action for action’s sake.

 Now imagine developing applications and putting a lot of effort and creativity
into solving the business problem, but then never deploying the application for
others to use and enjoy. Sure, most applications we write don’t involve car chases or
explosions (at least I hope not), but there’s a certain rush we get along the way. Of

This chapter covers
■ Deploying WAR files
■ Database migration
■ Deploying to the cloud

Licensed to Thomas Snead <n.ordickan@gmail.com>

161Weighing deployment options

course, not every line of code we write is destined for production, but it’d be a big let-
down if none of it ever was deployed.

 Up to this point we’ve been focused on using features of Spring Boot that help us
develop an application. There have been some exciting steps along the way. But it’s all
for nothing if we don’t cross the finish line and deploy the application.

 In this chapter we’re going to step beyond developing applications with Spring
Boot and look at how to deploy those applications. Although this may seem obvious
for anyone who has ever deployed a Java-based application, there are some unique
features of Spring Boot and related Spring projects we can draw on that make deploy-
ing Spring Boot applications unique.

 In fact, unlike most Java web applications, which are typically deployed to an appli-
cation server as WAR files, Spring Boot offers several deployment options. Before we
look at how to deploy a Spring Boot application, let’s consider all of the options and
choose a few that suit our needs best.

8.1 Weighing deployment options
There are several ways to build and run Spring Boot applications. You’ve already seen
a few of them:

■ Running the application in the IDE (either Spring ToolSuite or IntelliJ IDEA)
■ Running from the command line using the Maven spring-boot:run goal or

Gradle bootRun task
■ Using Maven or Gradle to produce an executable JAR file that can be run at the

command line
■ Using the Spring Boot CLI to run Groovy scripts at the command line
■ Using the Spring Boot CLI to produce an executable JAR file that can be run at

the command line

Any of these choices is suitable for running the application while you’re still develop-
ing it. But what about when you’re ready to deploy the application into a production
or other non-development environment?

 Although none of the choices listed seems fitting for deploying an application
beyond development, the truth is that all but one of them is a valid choice. Running
an application within the IDE is certainly ill-suited for a production deployment. Exe-
cutable JAR files and the Spring Boot CLI, however, are still on the table and are great
choices when deploying to a cloud environment.

 That said, you’re probably wondering how to deploy a Spring Boot application to a
more traditional application server environment such as Tomcat, WebSphere, or Web-
Logic. In those cases, executable JAR files and Groovy source code won’t work. For
application server deployment, you’ll need your application wrapped up in a WAR file.

 As it turns out, Spring Boot applications can be packaged for deployment in sev-
eral ways, as described in table 8.1.

Licensed to Thomas Snead <n.ordickan@gmail.com>

162 CHAPTER 8 Deploying Spring Boot applications

As you can see in table 8.1, your target environment will need to be a factor in your
choice. If you’re deploying to a Tomcat server running in your own data center, then
the choice of a WAR file has been made for you. On the other hand, if you’ll be
deploying to Cloud Foundry, you’re welcome to choose any of the deployment
options shown.

 In this chapter, we’re going to focus our attention on the following options:

■ Deploying a WAR file to a Java application server
■ Deploying an executable JAR file to Cloud Foundry
■ Deploying an executable JAR file to Heroku (where the build is performed by

Heroku)

As we explore these scenarios, we’re also going to have to deal with the fact that we’ve
been using an embedded H2 database as we’ve developed the application, and we’ll
look at ways to replace it with a production-ready database.

 To get started, let’s take a look at how we can build our reading-list application into
a WAR file that can be deployed to a Java application server such as Tomcat, Web-
Sphere, or WebLogic.

8.2 Deploying to an application server
Thus far, every time we’ve run the reading-list application, the web application has
been served from a Tomcat server embedded in the application. Compared to a con-
ventional Java web application, the tables were turned. The application has not been
deployed in Tomcat; rather, Tomcat has been deployed in the application.

 Thanks in large part to Spring Boot auto-configuration, we’ve not been required to
create a web.xml file or servlet initializer class to declare Spring’s DispatcherServlet
for Spring MVC. But if we’re going to deploy the application to a Java application server,
we’re going to need to build a WAR file. And so that the application server will know how
to run the application, we’ll also need to include a servlet initializer in that WAR file.

8.2.1 Building a WAR file

As it turns out, building a WAR file isn’t that difficult. If you’re using Gradle to build
the application, you simply must apply the “war” plugin:

apply plugin: 'war'

Table 8.1 Spring Boot deployment choices

Deployment artifact Produced by Target environment

Raw Groovy source Written by hand Cloud Foundry and container deployment, such as with Docker

Executable JAR Maven, Gradle, or
Spring Boot CLI

Cloud environments, including Cloud Foundry and Heroku, as
well as container deployment, such as with Docker

WAR Maven or Gradle Java application servers or cloud environments such as Cloud
Foundry

Licensed to Thomas Snead <n.ordickan@gmail.com>

163Deploying to an application server

Then, replace the existing jar configuration with the following war configuration in
build.gradle:

war {
baseName = 'readinglist'
version = '0.0.1-SNAPSHOT'

}

The only difference between this war configuration and the previous jar configura-
tion is the change of the letter j to w.

 If you’re using Maven to build the project, then it’s even easier to get a WAR file.
All you need to do is change the <packaging> element’s value from jar to war.

<packaging>war</packaging>

Those are the only changes required to produce a WAR file. But that WAR file will be
useless unless it includes a web.xml file or a servlet initializer to enable Spring MVC’s
DispatcherServlet.

 Spring Boot can help here. It provides SpringBootServletInitializer, a special
Spring Boot-aware implementation of Spring’s WebApplicationInitializer. Aside
from configuring Spring’s DispatcherServlet, SpringBootServletInitializer also
looks for any beans in the Spring application context that are of type Filter, Servlet,
or ServletContextInitializer and binds them to the servlet container.

 To use SpringBootServletInitializer, simply create a subclass and override the
configure() method to specify the Spring configuration class. Listing 8.1 shows
ReadingListServletInitializer, a subclass of SpringBootServletInitializer that
we’ll use for the reading-list application.

package readinglist;
import org.springframework.boot.builder.SpringApplicationBuilder;
import org.springframework.boot.context.web.SpringBootServletInitializer;

public class ReadingListServletInitializer
extends SpringBootServletInitializer {

@Override
protected SpringApplicationBuilder configure(

SpringApplicationBuilder builder) {
return builder.sources(Application.class);

}

}

As you can see, the configure() method is given a SpringApplicationBuilder as a
parameter and returns it as a result. In between, it calls the sources() method to reg-
ister any Spring configuration classes. In this case, it only registers the Application

Listing 8.1 Extending SpringBootServletInitializer for the reading-list application

Specify Spring
configuration

Licensed to Thomas Snead <n.ordickan@gmail.com>

164 CHAPTER 8 Deploying Spring Boot applications

class, which, as you’ll recall, served dual purpose as both a bootstrap class (with a
main() method) and a Spring configuration class.

 Even though the reading-list application has other Spring configuration classes, it’s
not necessary to register them all with the sources() method. The Application class
is annotated with @SpringBootApplication, which implicitly enables component-
scanning. Component-scanning will discover and pull in any other configuration
classes that it finds.

 Now we’re ready to build the application. If you’re using Gradle to build the proj-
ect, simply invoke the build task:

$ gradle build

Assuming no problems, the build will produce a file named readinglist-0.0.1-SNAP-
SHOT.war in build/libs.

 For a Maven-based build, use the package goal:

$ mvn package

After a successful Maven build, the WAR file will be found in the “target” directory.
 All that’s left is to deploy the application. The deployment procedure varies across

application servers, so consult the documentation for your application server’s spe-
cific deployment procedure.

 For Tomcat, you can deploy an application by copying the WAR file into Tomcat’s
webapps directory. If Tomcat is running (or once it starts up if it isn’t currently run-
ning), it will detect the presence of the WAR file, expand it, and install it.

 Assuming that you didn’t rename the WAR file before deploying it, the servlet
context path will be the same as the base name of the WAR file, or /readinglist-0.0.1-
SNAPSHOT in the case of the reading-list application. Point your browser at http://
server:_port_/readinglist-0.0.1-SNAPSHOT to kick the tires on the app.

 One other thing worth noting: even though we’re building a WAR file, it may still
be possible to run it without deploying to an application server. Assuming you don’t
remove the main() method from Application, the WAR file produced by the build
can also be run as if it were an executable JAR file:

$ java -jar readinglist-0.0.1-SNAPSHOT.war

In effect, you get two deployment options out of a single deployment artifact!
 At this point, the application should be up and running in Tomcat. But it’s still

using the embedded H2 database. An embedded database was handy while develop-
ing the application, but it’s not a great choice in production. Let’s see how to wire in a
different data source when deploying to production.

8.2.2 Creating a production profile

Thanks to auto-configuration, we have a DataSource bean that references an embedded
H2 database. More specifically, the DataSource bean is a data source pool, typically

Licensed to Thomas Snead <n.ordickan@gmail.com>

165Deploying to an application server

org.apache.tomcat.jdbc.pool.DataSource. Therefore, it may seem obvious that in
order to use some database other than the embedded H2 database, we simply need to
declare our own DataSource bean, overriding the auto-configured DataSource, to ref-
erence a production database of our choosing.

 For example, suppose that we wanted to work with a PostgreSQL database running
on localhost with the name “readingList”. The following @Bean method would
declare our DataSource bean:

@Bean
@Profile("production")
public DataSource dataSource() {

DataSource ds = new DataSource();
ds.setDriverClassName("org.postgresql.Driver");
ds.setUrl("jdbc:postgresql://localhost:5432/readinglist");
ds.setUsername("habuma");
ds.setPassword("password");
return ds;

}

Here the DataSource type is Tomcat’s org.apache.tomcat.jdbc.pool.DataSource,
not to be confused with javax.sql.DataSource, which it ultimately implements. The
details required to connect to the database (including the JDBC driver class name, the
database URL, and the database credentials) are given to the DataSource instance. With
this bean declared, the default auto-configured DataSource bean will be passed over.

 The key thing to notice about this @Bean method is that it is also annotated with
@Profile to specify that it should only be created if the “production” profile is active.
Because of this, we can still use the embedded H2 database while developing the
application, but use the PostgreSQL database in production by activating the profile.

 Although that should do the trick, there’s a better way to configure the database
details without explicitly declaring our own DataSource bean. Rather than replace the
auto-configured DataSource bean, we can configure it via properties in applica-
tion.yml or application.properties. Table 8.2 lists all of the properties that are useful
for configuring the DataSource bean.

Table 8.2 DataSource configuration properties

Property (prefixed with spring.datasource.) Description

name The name of the data source

initialize Whether or not to populate using data.sql (default:
true)

schema The name of a schema (DDL) script resource

data The name of a data (DML) script resource

sql-script-encoding The character set for reading SQL scripts

Licensed to Thomas Snead <n.ordickan@gmail.com>

166 CHAPTER 8 Deploying Spring Boot applications

Most of the properties in table 8.2 are for fine-tuning the connection pool. I’ll leave it
to you to tinker with those settings as you see fit. What we’re interested in now, how-
ever, is setting a few properties that will point the DataSource bean at PostgreSQL

platform The platform to use when reading the schema
resource (for example, “schema-{platform}.sql”)

continue-on-error Whether or not to continue if initialization fails
(default: false)

separator The separator in the SQL scripts (default: ;)

driver-class-name The fully qualified class name of the JDBC driver
(can often be automatically inferred from the URL)

url The database URL

username The database username

password The database password

jndi-name A JNDI name for looking up a datasource via JNDI

max-active Maximum active connections (default: 100)

max-idle Maximum idle connections (default: 8)

min-idle Minimum idle connections (default: 8)

initial-size The initial size of the connection pool (default: 10)

validation-query A query to execute to verify the connection

test-on-borrow Whether or not to test a connection as it’s borrowed
from the pool (default: false)

test-on-return Whether or not to test a connection as it’s returned
to the pool (default: false)

test-while-idle Whether or not to test a connection while it is idle
(default: false)

time-between-eviction-runs-millis How often (in milliseconds) to evict connections
(default: 5000)

min-evictable-idle-time-millis The minimum time (in milliseconds) that a connec-
tion can be idle before being tested for eviction
(default: 60000)

max-wait The maximum time (in milliseconds) that the pool
will wait when no connections are available before
failing (default: 30000)

jmx-enabled Whether or not the data source is managed by JMX
(default: false)

Table 8.2 DataSource configuration properties (continued)

Property (prefixed with spring.datasource.) Description

Licensed to Thomas Snead <n.ordickan@gmail.com>

167Deploying to an application server

instead of the embedded H2 database. Specifically, the spring.datasource.url,
spring.datasource.username, and spring.datasource.password properties are
what we need.

 As I’m writing this, I have a PostgreSQL database running locally, listening on
port 5432, with a username and password of “habuma” and “password”. Therefore,
the following “production” profile in application.yml is what I used:

spring:

profiles: production
datasource:
url: jdbc:postgresql://localhost:5432/readinglist
username: habuma
password: password

jpa:
database-platform: org.hibernate.dialect.PostgreSQLDialect

Notice that this excerpt starts with --- and the first property set is spring.profiles.
This indicates that the properties that follow will only be applied if the “production”
profile is active.

 Next, the spring.datasource.url, spring.datasource.username, and spring
.datasource.password properties are set. Note that it’s usually unnecessary to set the
spring.datasource.driver-class-name property, as Spring Boot can infer it from
the value of the spring.datasource.url property. I also had to set some JPA proper-
ties. The spring.jpa.database-platform property sets the underlying JPA engine to
use Hibernate’s PostgreSQL dialect.

 To enable this profile, we’ll need to set the spring.profiles.active property to
“production”. There are several ways to set this property, but the most convenient way
is by setting a system environment variable on the machine running the application
server. To enable the “production” profile before starting Tomcat, I exported the
SPRING_PROFILES_ACTIVE environment variable like this:

$ export SPRING_PROFILES_ACTIVE=production

You probably noticed that SPRING_PROFILES_ACTIVE is different from spring

.profiles.active. It’s not possible to export an environment variable with periods in
the name, so it was necessary to alter the name slightly. From Spring’s point of view,
the two names are equivalent.

 We’re almost ready to deploy the application to an application server and see it
run. In fact, if you are feeling adventurous, go ahead and try it. You’ll run into a small
problem, however.

 By default, Spring Boot configures Hibernate to create the schema automatically
when using the embedded H2 database. More specifically, it sets Hibernate’s
hibernate.hbm2ddl.auto to create-drop, indicating that the schema should be
created when Hibernate’s SessionFactory is created and dropped when it is closed.

Licensed to Thomas Snead <n.ordickan@gmail.com>

168 CHAPTER 8 Deploying Spring Boot applications

But it’s set to do nothing if you’re not using an embedded H2 database. This means
that our application’s tables won’t exist and you’ll see errors as it tries to query those
nonexistent tables.

8.2.3 Enabling database migration

One option is to set the hibernate.hbm2ddl.auto property to create, create-drop,
or update via Spring Boot’s spring.jpa.hibernate.ddl-auto property. For instance,
to set hibernate.hbm2ddl.auto to create-drop we could add the following lines to
application.yml:

spring:
jpa:
hibernate:

ddl-auto: create-drop

This, however, is not ideal for production, as the database schema would be wiped
clean and rebuilt from scratch any time the application was restarted. It may be tempt-
ing to set it to update, but even that isn’t recommended in production.

 Alternatively, we could define the schema in schema.sql. This would work fine the
first time, but every time we started the application thereafter, the initialization scripts
would fail because the tables in question would already exist. This would force us to
take special care in writing our initialization scripts to not attempt to repeat any work
that has already been done.

 A better choice is to use a database migration library. Database migration libraries
work from a set of database scripts and keep careful track of the ones that have already
been applied so that they won’t be applied more than once. By including the scripts
within each deployment of the application, the database is able to evolve in concert
with the application.

 Spring Boot includes auto-configuration support for two popular database migra-
tion libraries:

■ Flyway (http://flywaydb.org)
■ Liquibase (www.liquibase.org)

All you need to do to use either of these database migration libraries with Spring Boot
is to include them as dependencies in the build and write the scripts. Let’s see how
they work, starting with Flyway.

DEFINING DATABASE MIGRATION WITH FLYWAY

Flyway is a very simple, open source database migration library that uses SQL for defin-
ing the migration scripts. The idea is that each script is given a version number, and
Flyway will execute each of them in order to arrive at the desired state of the database.
It also records the status of scripts it has executed so that it won’t run them again.

 For the reading-list application, we’re starting with an empty database with no tables
or data. Therefore, the script we’ll need to get started will need to create the Reader

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://flywaydb.org/
www.liquibase.org/

169Deploying to an application server

and Book tables, including any foreign-key constraints and initial data. Listing 8.2
shows the Flyway script we’ll need to go from an empty database to one that our appli-
cation can use.

create table Reader (
id serial primary key,
username varchar(25) unique not null,
password varchar(25) not null,
fullname varchar(50) not null

);

create table Book (
id serial primary key,
author varchar(50) not null,
description varchar(1000) not null,
isbn varchar(10) not null,
title varchar(250) not null,
reader_username varchar(25) not null,
foreign key (reader_username) references Reader(username)

);

create sequence hibernate_sequence;

insert into Reader (username, password, fullname)
values ('craig', 'password', 'Craig Walls');

As you can see, the Flyway script is just SQL. What
makes it work with Flyway is where it’s placed in the
classpath and how it’s named. Flyway scripts follow a
naming convention that includes the version number,
as illustrated in figure 8.1.

 All Flyway scripts have names that start with a capi-
tal V which precedes the script’s version number.
That’s followed by two underscores and a description
of the script. Because this is the first script in the
migration, it will be version 1. The description given can be flexible and is primarily to
provide some understanding of the script’s purpose. Later, should we need to add a
new table to the database or a new column to an existing table, we can create another
script named with 2 in the version place.

 Flyway scripts need to be placed in the path /db/migration relative to the applica-
tion’s classpath root. Therefore, this script needs to be placed in src/main/resources/
db/migration within the project.

 You’ll also need to tell Hibernate to not attempt to create the tables by setting
spring.jpa.hibernate.ddl-auto to none. The following lines in application.yml take
care of that:

Listing 8.2 A database initialization script for Flyway

Create Reader
table

Create Book table

Define a sequence

An initial
Reader

Figure 8.1 Flyway scripts are
named with their version number.

Licensed to Thomas Snead <n.ordickan@gmail.com>

170 CHAPTER 8 Deploying Spring Boot applications

spring:
jpa:
hibernate:

ddl-auto: none

All that’s left is to add Flyway as a dependency in the project build. Here’s the depen-
dency that’s required for Gradle:

compile("org.flywaydb:flyway-core")

In a Maven build, the <dependency> is as follows:

<dependency>
<groupId>org.flywayfb</groupId>
<artifactId>flyway-core</artifactId>

</dependency>

When the application is deployed and running, Spring Boot will detect Flyway in the
classpath and auto-configure the beans necessary to enable it. Flyway will step through
any scripts in /db/migration and apply them if they haven’t already been applied. As
each script is executed, an entry will be written to a table named schema_version. The
next time the application starts, Flyway will see that those scripts have been recorded
in schema_version and skip over them.

DEFINING DATABASE MIGRATION WITH LIQUIBASE

Flyway is simple to use, especially with help from Spring Boot auto-configuration. But
defining migration scripts with SQL is a two-edged sword. Although it’s easy and natu-
ral to work with SQL, you run the risk of defining a migration script that works with
one database platform but not another.

 Rather than be limited to platform-specific SQL, Liquibase supports several for-
mats for writing migration scripts that are agnostic to the underlying platform. These
include XML, YAML, and JSON. And, if you really want it, Liquibase also supports SQL
scripts.

 The first step to using Liquibase with Spring Boot is to add it as a dependency in
your build. The Gradle dependency is as follows:

compile("org.liquibase:liquibase-core")

For Maven, here’s the <dependency> you’ll need:

<dependency>
<groupId>org.liquibase</groupId>
<artifactId>liquibase-core</artifactId>

</dependency>

Spring Boot auto-configuration takes it from there, wiring up the beans that support
Liquibase. By default, those beans are wired to look for all of the migration scripts in a
single file named db.changelog-master.yaml in /db/changelog (relative to the classpath

Licensed to Thomas Snead <n.ordickan@gmail.com>

171Deploying to an application server

root). The migration script in listing 8.3 includes instructions to initialize the database
for the reading-list application.

databaseChangeLog:
- changeSet:

id: 1
author: habuma
changes:

- createTable:
tableName: reader
columns:

- column:
name: username
type: varchar(25)
constraints:

unique: true
nullable: false

- column:
name: password
type: varchar(25)
constraints:

nullable: false
- column:

name: fullname
type: varchar(50)
constraints:

nullable: false
- createTable:

tableName: book
columns:

- column:
name: id
type: bigserial
autoIncrement: true
constraints:

primaryKey: true
nullable: false

- column:
name: author
type: varchar(50)
constraints:

nullable: false
- column:

name: description
type: varchar(1000)
constraints:

nullable: false
- column:

name: isbn
type: varchar(10)
constraints:

nullable: false

Listing 8.3 A Liquibase script for initializing the reading-list database

Changeset ID

Create reader
table

Create book
table

Licensed to Thomas Snead <n.ordickan@gmail.com>

172 CHAPTER 8 Deploying Spring Boot applications

- column:
name: title
type: varchar(250)
constraints:

nullable: false
- column:

name: reader_username
type: varchar(25)
constraints:

nullable: false
references: reader(username)
foreignKeyName: fk_reader_username

- createSequence:
sequenceName: hibernate_sequence

- insert:
tableName: reader
columns:

- column:
name: username
value: craig

- column:
name: password
value: password

- column:
name: fullname
value: Craig Walls

As you can see, the YAML format is a bit more verbose than the equivalent Flyway SQL
script. But it’s still fairly clear as to its purpose and it isn’t coupled to any specific data-
base platform.

 Unlike Flyway, which has multiple scripts, one for each change set, Liquibase
changesets are all collected in the same file. Note the id property on the line follow-
ing the changeset command. Future changes to the database can be included by add-
ing a new changeset with a different id. Also note that the id property isn’t
necessarily numeric and may contain any text you’d like.

 When the application starts up, Liquibase will read the changeset instructions in
db.changelog-master.yaml, compare them with what it may have previously written to
the databaseChangeLog table, and apply any changesets that have not yet been
applied.

 Although the example given here is expressed in YAML format, you’re welcome to
choose one of Liquibase’s other supported formats, such as XML or JSON. Simply set
the liquibase.change-log property (in application.properties or application.yml) to
reflect the file you want Liquibase to load. For example, to use an XML changeset file,
set liquibase.change-log like this:

liquibase:
change-log: classpath:/db/changelog/db.changelog-master.xml

Define a
sequence

Insert an initial
reader

Licensed to Thomas Snead <n.ordickan@gmail.com>

173Pushing to the cloud

Spring Boot auto-configuration makes both Liquibase and Flyway a piece of cake to
work with. But there’s a lot more to what each of these database migration libraries
can do beyond what we’ve seen here. I encourage you to refer to each project’s docu-
mentation for more details.

 We’ve seen how building Spring Boot applications for deployment into a conven-
tional Java application server is largely a matter of creating a subclass of Spring-
BootServletInitializer and adjusting the build specification to produce a WAR file
instead of a JAR file. But as we’ll see next, Spring Boot applications are even easier to
build for the cloud.

8.3 Pushing to the cloud
Server hardware can be expensive to purchase and maintain. Properly scaling servers
to handle heavy loads can be tricky and even prohibitive for some organizations.
These days, deploying applications to the cloud is a compelling and cost-effective
alternative to running your own data center.

 There are several cloud choices available, but those that offer a platform as a ser-
vice (PaaS) are among the most compelling. PaaS offers a ready-made application
deployment platform with several add-on services (such as databases and message bro-
kers) to bind to your applications. In addition, as your application requires additional
horsepower, cloud platforms make it easy to scale up (or down) your application on
the fly by adding and removing instances.

 Now that we’ve deployed the reading-list application to a traditional application
server, we’re going to try deploying it to the cloud. Specifically, we’re going to deploy
our application to two of the most popular PaaS platforms available: Cloud Foundry
and Heroku.

8.3.1 Deploying to Cloud Foundry

Cloud Foundry is a PaaS platform from Pivotal, the same company that sponsors the
Spring Framework and the other libraries in the Spring platform. One of the most
compelling things about Cloud Foundry is that it is both open source and has several
commercial distributions, giving you the choice of how and where you use Cloud
Foundry. It can even be run inside the firewall in a corporate datacenter, offering a
private cloud.

 For the reading-list application, we’re going to deploy to Pivotal Web Services
(PWS), a public Cloud Foundry hosted by Pivotal at http://run.pivotal.io. If you want
to work with PWS, you’ll need to sign up for an account. PWS offers a 60-day free trial
and doesn’t even require you to give any credit card information during the trial.

 Once you’ve signed up for PWS, you’ll need to download and install the cf
command-line tool from https://console.run.pivotal.io/tools. You’ll use the cf tool to
push applications to Cloud Foundry. But the first thing you’ll use it for is to log into
your PWS account:

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://run.pivotal.io
https://console.run.pivotal.io/tools

174 CHAPTER 8 Deploying Spring Boot applications

$ cf login -a https://api.run.pivotal.io
API endpoint: https://api.run.pivotal.io

Email> {your email}

Password> {your password}
Authenticating...
OK

Now we’re ready to take the reading-list application to the cloud. As it turns out, our
reading-list project is already ready to be deployed to Cloud Foundry. All we need to
do is use the cf push command:

$ cf push sbia-readinglist -p build/libs/readinglist.war

The first argument to cf push is the name given to the application in Cloud Foundry.
Among other things, this name will be used as the subdomain that the application will
be hosted at. In this case, the full URL for the application will be http://sbia-readinglist
.cfapps.io. Therefore, it’s important that the name you give the application be unique
so that it doesn’t collide with any other application deployed in Cloud Foundry (includ-
ing those deployed by other Cloud Foundry users).

 Because dreaming up a unique name may be tricky, the cf push command offers a
--random-route option that will randomly produce a subdomain for you. Here’s how
to push the reading-list application so that a random route is generated:

$ cf push sbia-readinglist -p build/libs/readinglist.war --random-route

When using --random-route, the application name is still required, but two randomly
chosen words will be appended to it to produce the subdomain. (When I tried it, the
resulting subdomain was sbia-readinglist-gastroenterological-stethoscope.)

NOT JUST WAR FILES Although we’re going to deploy the reading-list applica-
tion as a WAR file, Cloud Foundry will be happy to deploy Spring Boot appli-
cations in any form they come in, including executable JAR files and even
uncompiled Groovy scripts run via the Spring Boot CLI.

Assuming everything goes well, the application should be deployed and ready to handle
requests. Supposing that the subdomain is sbia-readinglist, you can point your browser
at http://sbia-readinglist.cfapps.io to see it in action. You should be prompted with the
login page. As you’ll recall, the database migration script inserted a user named “craig”
with a password of “password”. Use those to log into the application.

 Go ahead and play around with the application and add a few books to the reading
list. Everything should work. But something still isn’t quite right. If you were to restart
the application (using the cf restart command) and then log back into the applica-
tion, you’d see that your reading list is empty. Any book you’ve added before restart-
ing the application will be gone.

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://sbia-readinglist.cfapps.io
http://sbia-readinglist.cfapps.io
http://sbia-readinglist.cfapps.io

175Pushing to the cloud

 The reason the data doesn’t survive an application restart is because we’re still
using the embedded H2 database. You can verify this by requesting the Actuator’s
/health endpoint, which will reply with something like this:

{
"status": "UP",
"diskSpace": {
"status": "UP",
"free": 834236510208,
"threshold": 10485760

},
"db": {
"status": "UP",
"database": "H2",
"hello": 1

}
}

Notice the value of the db.database property. It confirms any suspicion we might
have had that the database is an embedded H2 database. We need to fix that.

 As it turns out, Cloud Foundry offers a few database options to choose from in the
form of marketplace services, including MySQL and PostgreSQL. Because we already
have the PostgreSQL JDBC driver in our project, we’ll use the PostgreSQL service from
the marketplace, which is named “elephantsql”.

 The elephantsql service comes with a handful of different plans to choose from,
ranging from small development-sized databases to large industrial-strength produc-
tion databases. You can get a list of all of the elephantsql plans with the cf market-
place command like this:

$ cf marketplace -s elephantsql
Getting service plan information for service elephantsql as craig@habuma.com...
OK

service plan description free or paid
turtle Tiny Turtle free
panda Pretty Panda paid
hippo Happy Hippo paid
elephant Enormous Elephant paid

As you can see, the more serious production-sized database plans require payment.
You’re welcome to choose one of those plans if you want, but for now I’ll assume that
you’re choosing the free “turtle” plan.

 To create an instance of the database service, you can use the cf create-service
command, specifying the service name, the plan name, and an instance name:

$ cf create-service elephantsql turtle readinglistdb
Creating service readinglistdb in org habuma /

space development as craig@habuma.com...
OK

Licensed to Thomas Snead <n.ordickan@gmail.com>

176 CHAPTER 8 Deploying Spring Boot applications

Once the service has been created, we’ll need to bind it to our application with the
cf bind-service command:

$ cf bind-service sbia-readinglist readinglistdb

Binding a service to an application merely provides the application with details on
how to connect to the service within an environment variable named VCAP_SERVICES.
It doesn’t change the application to actually use that service.

 We could rewrite the reading-list application to read VCAP_SERVICES and use the
information it provides to access the database service, but that’s completely unneces-
sary. Instead, all we need to do is restage the application with the cf restage command:

$ cf restage sbia-readinglist

The cf restage command forces Cloud Foundry to redeploy the application and
reevaluate the VCAP_SERVICES value. As it does, it will see that our application declares
a DataSource bean in the Spring application context and replaces it with a DataSource
that references the bound database service. As a consequence, our application will now
be using the PostgreSQL service known as elephantsql rather than the embedded
H2 database.

 Go ahead and try it out now. Log into the application, add a few books to the read-
ing list, and then restart the application. Your books should still be in your reading list
after the restart. That’s because they were persisted to the bound database service
rather than to an embedded H2 database. Once again, the Actuator’s /health end-
point will back up that claim:

{
"status": "UP",
"diskSpace": {
"status": "UP",
"free": 834331525120,
"threshold": 10485760

},
"db": {
"status": "UP",
"database": "PostgreSQL",
"hello": 1

}
}

Cloud Foundry is a great PaaS for Spring Boot application deployment. Its associa-
tion with the Spring projects affords some synergy between the two. But it’s
not the only PaaS where Spring Boot applications can be deployed. Let’s see what
needs to be done to deploy the reading-list application to Heroku, another popular
PaaS platform.

Licensed to Thomas Snead <n.ordickan@gmail.com>

177Pushing to the cloud

8.3.2 Deploying to Heroku

Heroku takes a unique approach to application deployment. Rather than deploy a
completely built deployment artifact, Heroku arranges a Git repository for your appli-
cation and builds and deploys the application for you every time you push it to the
repository.

 If you’ve not already done so, you’ll want to initialize the project directory as a Git
repository:

$ git init

This will enable the Heroku command-line tool to add the remote Heroku Git reposi-
tory to the project automatically.

 Now it’s time to set up the application in Heroku using the Heroku command-line
tool’s apps:create command:

$ heroku apps:create sbia-readinglist

Here I’ve asked Heroku to name the application “sbia-readinglist”. This name will be
used as the name of the Git repository as well as the subdomain of the application at
herokuapps.com. You’ll want to be sure to pick a unique name, as there can’t be more
than one application with the same name. Alternatively, you can leave off the name
and Heroku will generate a unique name for you (such as “fierce-river-8120” or
“serene-anchorage-6223”).

 The apps:create command creates a remote Git repository at https://git.heroku
.com/sbia-readinglist.git and adds a remote reference to the repository named “her-
oku” in the local project’s Git configuration. That will enable us to push our project
into Heroku using the git command.

 The project has been set up in Heroku, but we’re not quite ready to push it yet.
Heroku asks that you provide a file named Procfile that tells Heroku how to run the
application after it has been built. For our reading-list application, we need to tell
Heroku to run the WAR file produced by the build as an executable JAR file using the
java command.1 Assuming that the application will be built with Gradle, the following
one-line Procfile is what we’ll need:

web: java -Dserver.port=$PORT -jar build/libs/readinglist.war

On the other hand, if you’re using Maven to build the project, then the path to the
JAR file will be slightly different. Instead of referencing the executable WAR file in
build/libs, Heroku will need to find it in the target directory, as shown in the follow-
ing Procfile:

web: java -Dserver.port=$PORT -jar target/readinglist.war

1 The project we’re working with actually produces an executable WAR file, but as far as Heroku knows, it’s no
different than an executable JAR file.

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://git.heroku.com/sbia-readinglist.git
https://git.heroku.com/sbia-readinglist.git

178 CHAPTER 8 Deploying Spring Boot applications

In either case, you’ll also need to set the server.port property as shown so that the
embedded Tomcat server starts up on the port that Heroku assigns to the application
(provided by the $PORT variable).

 We’re almost ready to push the application to Heroku, but there’s a small change
required in the Gradle build specification. When Heroku tries to build our applica-
tion, it will do so by executing a task named stage. Therefore, we’ll need to add a
stage task to build.gradle:

task stage(dependsOn: ['build']) {
}

As you can see, this stage task doesn’t do much. But it does depend on the build task.
Therefore, the build task will be triggered when Heroku tries to build the application
with the stage task, and the resulting JAR will be ready to run in the build/libs directory.

 You may also need to inform Heroku of the Java version we’re building the applica-
tion with so that it runs the application with the appropriate version of Java. The easi-
est way to do that is to create a file named system.properties at the root of the project
that sets a java.runtime.version property:

java.runtime.version=1.7

Now we’re ready to push the project into Heroku. As I said before, this is just a matter
of pushing the code into the remote Git repository that Heroku set up for us:

$ git commit -am "Initial commit"
$ git push heroku master

After the code is pushed into Heroku, Heroku will build it using either Maven or
Gradle (depending on which kind of build file it finds) and then run it using the
instructions in Procfile. Once it’s ready, you should be able to try it out by point-
ing your browser at http://{app name}.herokuapp.com, where “{app name}” is the
name given to the application when you used apps:create. For example, I named
the application “sbia-readinglist” when I deployed it, so the application’s URL is
http://sbia-readinglist.herokuapps.com.

 Feel free to poke about in the application as much as you’d like. But then go take a
look at the /health endpoint. The db.database property should tell you that the
application is using the embedded H2 database. We should change that to use a Post-
greSQL service instead.

 We can create and bind to a PostgreSQL service using the Heroku command-line
tool’s addons:add command like this:

$ heroku addons:add heroku-postgresql:hobby-dev

Here we’re asking for the addon service named heroku-postgresql, which is the
PostgreSQL service offered by Heroku. We’re also asking for the hobby-dev plan for
that service, which is the free plan.

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://sbia-readinglist.herokuapps.com

179Pushing to the cloud

 Now the PostgreSQL service is created and bound to our application, and Heroku
will automatically restart the application to ensure that binding. But even so, if we
were to go look at the /health endpoint, we’d see that the application is still using the
embedded H2 database. That’s because the auto-configuration for H2 is still in play,
and there’s nothing to tell Spring Boot to use PostgreSQL instead.

 One option is to set the spring.datasource.* properties like we did when deploy-
ing to an application server. The information we’d need can be found on the database
service’s dashboard, which can be opened with the addons:open command:

$ heroku addons:open waking-carefully-3728

In this case, the name of the database instance is “waking-carefully-3728”. This com-
mand will open a dashboard page in your web browser that includes all of the neces-
sary connection information, including the hostname, database name, and
credentials—everything we’d need to set the spring.datasource.* properties.

 But there’s an easier way. Rather than look up that information for ourselves and
set those properties, why can’t Spring look them up for us? In fact, that’s what the
Spring Cloud Connectors project does. It works with both Cloud Foundry and Her-
oku to look up any services bound to an application and automatically configure the
application to use those services.

 We just need to add Spring Cloud Connectors as a dependency in the build. For a
Gradle build, add the following to build.gradle:

compile(
"org.springframework.boot:spring-boot-starter-cloud-connectors")

If you’re using Maven, the following <dependency> will add Spring Cloud Connectors
to the build:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-cloud-connectors</artifactId>

</dependency>

Spring Cloud Connectors will only work if the “cloud” profile is active. To activate the
“cloud” profile in Heroku, use the config:set command:

$ heroku config:set SPRING_PROFILES_ACTIVE="cloud"

Now that the Spring Cloud Connectors dependency is in the build and the “cloud”
profile is active, we’re ready to push the application again:

$ git commit -am "Add cloud connector"
$ git push heroku master

After the application starts up, sign in to the application and view the /health end-
point. It should indicate that the application is connected to a PostgreSQL database:

Licensed to Thomas Snead <n.ordickan@gmail.com>

180 CHAPTER 8 Deploying Spring Boot applications

"db": {
"status": "UP",
"database": "PostgreSQL",
"hello": 1

}

Now our application is deployed in the cloud, ready to take requests from the world!

8.4 Summary
There are several options for deploying Spring Boot applications, including tradi-
tional application servers and PaaS options in the cloud. In this chapter, we looked at
a few of those options, deploying the reading-list application as a WAR file to Tomcat
and in the cloud to both Cloud Foundry and Heroku.

 Spring Boot applications are often given a build specification that produces an
executable JAR file. But we’ve seen how to tweak the build and write a Spring-
BootServletInitializer implementation to produce a WAR file suitable for deploy-
ment to an application server.

 We then took a first step toward deploying our application to Cloud Foundry. Cloud
Foundry is flexible enough to accept Spring Boot applications in any form, including
executable JAR files, traditional WAR files, or even raw Spring Boot CLI Groovy scripts.
We also saw how Cloud Foundry is able to automatically swap out our embedded data
source bean with one that references a database service bound to the application.

 Finally we saw how although Heroku doesn’t offer automatic swapping of data
source beans like Cloud Foundry, by adding the Spring Cloud Connectors library to
our deployment we can achieve the same effect, enabling a bound database service
instead of an embedded database.

 Along the way, we also looked at how to enable database migration tools such as
Flyway and Liquibase in Spring Boot. We used database migration to initialize our
database on the first deployment and now are ready to evolve our database as needed
on future deployments.

Licensed to Thomas Snead <n.ordickan@gmail.com>

181

appendix A
Spring Boot Developer Tools

Spring Boot 1.3 introduced a new set of developer tools that make it even easier to
work with Spring Boot at development time. Among its many capabilities are

■ Automatic restart—Restarts a running application when files are changed in
the classpath

■ LiveReload support—Changes to resources trigger a browser refresh
automatically

■ Remote development—Supports automatic restart and LiveReload when
deployed remotely

■ Development property defaults—Provides sensible development defaults for
some configuration properties

Spring Boot’s developer tools come in the form of a library that can be added to a
project as a dependency. If you’re using Gradle to build your project, the develop-
ment tools can be added with the following line in your build.gradle file:

compile "org.springframework.boot:spring-boot-devtools"

Or it can be added as a <dependency> in a Maven POM:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-devtools</artifactId>

</dependency>

The developer tools will be disabled when your application is running from a fully
packaged JAR or WAR file, so it’s unnecessary to remove this dependency before
building a production deployment.

Licensed to Thomas Snead <n.ordickan@gmail.com>

182 APPENDIX A Spring Boot Developer Tools

Automatic restart
With the developer tools active, any changes to files on the classpath will trigger an
application restart. To make the restart as fast as possible, classes that won’t change
(such as those in third-party JAR files) will be loaded into a base classloader, whereas
application code that is being worked on will be loaded into a separate restart class-
loader. When changes are detected, only the restart classloader is restarted.

 There are some classpath resources that don’t require an application restart when
they change. View templates, such as Thymeleaf templates, can be edited on the fly
without restarting the application. Static resources in /static or /public likewise
don’t require an application restart, so Spring Boot developer tools exclude the fol-
lowing paths from restart consideration: /META-INF/resources, /resources, /static, /
public, /templates.

 The default set of restart path exclusions can be overridden by setting the
spring.devtools.restart.exclude property. For example, to only exclude /static
and /templates, set spring.devtools.restart.exclude like this:

spring:
devtools:
restart:

exclude: /static/**,/templates/**

On the other hand, if you’d rather disable automatic restart completely, you can set
spring.devtools.restart.enabled to false:

spring:
devtools:
restart:

enabled: false

Another option is to set a trigger file that must be changed in order for the restart to
take place. For example, suppose you don’t want a restart to happen unless a change
is made to a file named .trigger. All you must do is set the spring.devtools.restart
.trigger-file property like this:

spring:
devtools:
restart:

trigger-file: .trigger

A trigger file is useful if your IDE continuously compiles changed files. Without a trig-
ger file, every change would trigger a restart. With a trigger file, you can be sure that a
restart doesn’t happen unless you want it to (by making a change to the trigger file).

Licensed to Thomas Snead <n.ordickan@gmail.com>

183Remote development

LiveReload
One of the most common rituals of web application development involves the follow-
ing steps:

1 Make a change to rendered content (such as images, stylesheets, templates).
2 Click Refresh in the browser to see the results of the change.
3 Repeat starting at step 1.

Although it’s not an arduous process, it would be nice if you could see the results of a
change immediately, without clicking Refresh.

 Spring Boot’s developer tools integrate with LiveReload (http://livereload.com) to
eliminate the Refresh step. When the developer tools are active, Spring Boot will start
an embedded LiveReload server that can trigger a browser refresh whenever a resource
is changed. All you need to do is install the LiveReload plugin into your web browser.

 If you’d like to disable the embedded LiveReload server, you can do so by setting
spring.devtools.livereload.enabled to false:

spring:
devtools:
livereload:

enabled: false

Remote development
The automatic restart and LiveReload features of the developer tools are also option-
ally available when running the applications remotely (such as when deployed on a
server or in a cloud environment). In addition, Spring Boot’s developer tools enable
remote debugging of Spring Boot applications.

 In a typical deployment, you won’t want the remote development feature enabled,
as it will hinder performance. But in special cases, such as when developing an appli-
cation that’s deployed in a non-production environment set aside for development
purposes, these tools can come in handy. This is especially useful if your application
uses a cloud service that isn’t available in your local development environment.

 You must opt in to remote development by setting a remote secret:

spring:
devtools:
remote:

secret: myappsecret

By setting this property, a server component is enabled in the running application to
support remote development. This server will listen for requests asking it to accept
incoming changes and will either restart the application or trigger a browser refresh.

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://livereload.com

184 APPENDIX A Spring Boot Developer Tools

 In order to put this remote server to use, you’ll need to run the remote develop-
ment tools client locally. The remote client comes in the form of a class whose fully
qualified name is org.springframework.boot.devtools.RemoteSpringApplication.
It’s designed to run in your IDE with an argument telling it where your remote appli-
cation is deployed.

 For example, suppose you’re running the reading-list application remotely,
deployed on Cloud Foundry at https://readinglist.cfapps.io. If you’re using Eclipse or
Spring ToolSuite, you can start the remote client with the following steps:

1 Select the Run > Run Configurations menu item.
2 Create a new Java Application launch configuration.
3 Select the Reading List project in the Project field (either by typing the project

name or clicking the Browse button and finding it). See figure A.1.
4 Enter org.springframework.boot.devtools.RemoteSpringApplication into

the Main Class field. See figure A.1.
5 On the Arguments tab, enter https://readinglist.cfapps.io into the Pro-

gram Arguments field. See figure A.2.

Figure A.1 RemoteSpringApplication is the remote developer tools client.

Licensed to Thomas Snead <n.ordickan@gmail.com>

https://readinglist.cfapps.io

185Remote development

Once the client has started, you can start making changes to the application in your
IDE. As changes are detected, they’ll be pushed to the remote server and applied. If
changes are made to a rendered web resource (such as a stylesheet or JavaScript),
they’ll also trigger a browser refresh using LiveReload.

 The remote client will also enable tunneling of remote debug traffic over HTTP so
that you can debug a remotely deployed application in your IDE. All you must do is
ensure that the remote application has remote debugging enabled. This can usually
be done by configuring JAVA_OPTS.

Figure A.2 RemoteSpringApplication takes the remote app’s URL as an argument.

Licensed to Thomas Snead <n.ordickan@gmail.com>

186 APPENDIX A Spring Boot Developer Tools

 For example, if your application is deployed to Cloud Foundry, you can set
JAVA_OPTS in your application’s manifest.yml file like this:

env:
JAVA_OPTS: "-Xdebug -Xrunjdwp:server=y,transport=dt_socket,suspend=n"

Once the remote application is started and a connection is established with the local
debug server, you should be able to set breakpoints and step through the code of the
remote application much as if it were local (albeit a bit slower due to network latency).

Development property defaults
There are some configuration properties that are usually set at development time, but
never in a production setting. View template caching, for instance, is best disabled during
development so that you can see the results of any changes you make immediately. But in
production, view template caching should be left enabled for better performance.

 By default, Spring Boot will enable caching for any of the supported view template
options (Thymeleaf, Freemarker, Velocity, Mustache, and Groovy templates). But if
Spring Boot’s developer tools are in play, that caching will be disabled.

 Essentially what this means is that when the developer tools are active, the follow-
ing properties are set to false:

■ spring.thymeleaf.cache
■ spring.freemarker.cache
■ spring.velocity.cache
■ spring.mustache.cache
■ spring.groovy.template.cache

This saves you from having to disable them (likely in a development-profiled configu-
ration) for development time.

Globally configuring developer tools
As you work with the developer tools, you’ll probably find that you regularly use the
same settings across multiple projects. For instance, if you use a restart trigger file,
you’re likely to name the trigger file consistently across projects. Rather than repeat
developer tool configuration in each project, it may be more convenient to configure
the developer tools globally.

 To do this, create a file named .spring-boot-devtools.properties in your home
directory. (Note that the name starts with a period.) In that file, set whatever devel-
oper tool properties you want to have applied across all of your projects.

Licensed to Thomas Snead <n.ordickan@gmail.com>

187Globally configuring developer tools

 For example, suppose that you want to set a trigger file named .trigger and disable
LiveReload across all of your Spring Boot projects. To do that, you can create a
.spring-boot-devtools.properties file with the following lines:

spring.devtools.restart.trigger-file=.trigger
spring.devtools.livereload.enabled=false

Then, should you want to override any of these properties, you can do so on a project-
by-project basis by setting them in each project’s application.properties or applica-
tion.yml file.

Licensed to Thomas Snead <n.ordickan@gmail.com>

188

appendix B
Spring Boot starters

Spring Boot starter dependencies greatly simplify the dependencies section of your
project’s build specification by aggregating commonly used dependencies under
more coarse-grained dependencies. Your build will transitively resolve the depen-
dencies that are declared in the starter dependency.

 Not only do starter dependencies keep the dependencies section of the build
smaller, they are typically organized by the type of functionality they bring to an
application. For example, rather than specify specific libraries required for valida-
tion (such as Hibernate Validator and Tomcat’s embedded expression language),
you can simply add the spring-boot-starter-validation starter as a dependency.

 Table B.1 lists all of Spring Boot’s starter dependencies along with the depen-
dencies that they transitively declare.

Table B.1 Spring Boot starters

Starter
(Group ID: org.springframework.boot)

Transitively depends on

spring-boot-starter ■ org.springframework.boot:spring-boot

■ org.springframework.boot:spring-boot-autoconfigure

■ org.springframework.boot:spring-boot-starter-logging

■ org.springframework:spring-core
(excludes commons-logging:commons-logging)

■ org.yaml:snakeyaml

spring-boot-starter-actuator ■ org.springframework.boot:spring-boot-starter

■ org.springframework.boot:spring-boot-actuator

spring-boot-starter-amqp ■ org.springframework.boot:spring-boot-starter

■ org.springframework:spring-messaging

■ org.springframework.amqp:spring-rabbit

Licensed to Thomas Snead <n.ordickan@gmail.com>

189APPENDIX B Spring Boot starters

Table B.1 Spring Boot starters (continued)

Starter
(Group ID: org.springframework.boot)

Transitively depends on

spring-boot-starter-aop ■ org.springframework.boot:spring-boot-starter

■ org.springframework:spring-aop

■ org.aspectj:aspectjrt

■ org.aspectj:aspectjweaver

spring-boot-starter-artemis ■ org.springframework.boot:spring-boot-starter

■ org.springframework:spring-jms

■ org.apache.activemq:artemis-jms-client

spring-boot-starter-batch ■ org.springframework.boot:spring-boot-starter

■ org.hsqldb:hsqldb

■ org.springframework:spring-jdbc

■ org.springframework.batch:spring-batch-core

spring-boot-starter-cache ■ org.springframework.boot:spring-boot-starter

■ org.springframework:spring-context

■ org.springframework:spring-context-support

spring-boot-starter-cloud-connectors ■ org.springframework.boot:spring-boot-starter

■ org.springframework.cloud:spring-cloud-spring-service-connector

■ org.springframework.cloud:spring-cloud-cloudfoundry-connector

■ org.springframework.cloud:spring-cloud-heroku-connector

■ org.springframework.cloud:spring-cloud-localconfig-connector

spring-boot-starter-data-elasticsearch ■ org.springframework.boot:spring-boot-starter

■ org.springframework.data:spring-data-elasticsearch

spring-boot-starter-data-gemfire ■ org.springframework.boot:spring-boot-starter

■ com.gemstone.gemfire:gemfire
(excludes commons-logging:commons-logging)

■ org.springframework.data:spring-data-gemfire

spring-boot-starter-data-jpa ■ org.springframework.boot:spring-boot-starter

■ org.springframework.boot:spring-boot-starter-aop

■ org.springframework.boot:spring-boot-starter-jdbc

■ org.hibernate:hibernate-entitymanager
(excludes org.jboss.spec.javax.transaction:jboss-transaction-api_1.2_spec)

■ javax.transaction:javax.transaction-api

■ org.springframework.data:spring-data-jpa

■ org.springframework:spring-aspects

spring-boot-starter-data-mongodb ■ org.springframework.boot:spring-boot-starter

■ org.mongodb:mongo-java-driver

■ org.springframework.data:spring-data-mongodb

Licensed to Thomas Snead <n.ordickan@gmail.com>

190 APPENDIX B Spring Boot starters

spring-boot-starter-data-rest ■ org.springframework.boot:spring-boot-starter

■ org.springframework.boot:spring-boot-starter-web

■ com.fasterxml.jackson.core:jackson-annotations

■ com.fasterxml.jackson.core:jackson-databind

■ org.springframework.data:spring-data-rest-webmvc

spring-boot-starter-data-solr ■ org.springframework.boot:spring-boot-starter

■ org.apache.solr:solr-solrj (excludes log4j:log4j)

■ org.springframework.data:spring-data-solr

■ org.apache.httpcomponents:httpmime

spring-boot-starter-freemarker ■ org.springframework.boot:spring-boot-starter

■ org.springframework.boot:spring-boot-starter-web

■ org.freemarker:freemarker

■ org.springframework:spring-context-support

spring-boot-starter-groovy-templates ■ org.springframework.boot:spring-boot-starter

■ org.springframework.boot:spring-boot-starter-web

■ org.codehaus.groovy:groovy-templates

spring-boot-starter-hateoas ■ org.springframework.boot:spring-boot-starter-web

■ org.springframework.hateoas:spring-hateoas

■ org.springframework.plugin:spring-plugin-core

spring-boot-starter-hornetq ■ org.springframework.boot:spring-boot-starter

■ org.springframework:spring-jms

■ org.hornetq:hornetq-jms-client

spring-boot-starter-integration ■ org.springframework.boot:spring-boot-starter

■ org.springframework.boot:spring-boot-starter-aop

■ org.springframework.integration:spring-integration-core

■ org.springframework.integration:spring-integration-file

■ org.springframework.integration:spring-integration-http

■ org.springframework.integration:spring-integration-ip

■ org.springframework.integration:spring-integration-stream

spring-boot-starter-jdbc ■ org.springframework.boot:spring-boot-starter

■ org.apache.tomcat:tomcat-jdbc

■ org.springframework:spring-jdbc

Table B.1 Spring Boot starters (continued)

Starter
(Group ID: org.springframework.boot)

Transitively depends on

Licensed to Thomas Snead <n.ordickan@gmail.com>

191APPENDIX B Spring Boot starters

spring-boot-starter-jersey ■ org.springframework.boot:spring-boot-starter

■ org.springframework.boot:spring-boot-starter-tomcat

■ org.springframework.boot:spring-boot-starter-validation

■ com.fasterxml.jackson.core:jackson-databind

■ org.springframework:spring-web

■ org.glassfish.jersey.core:jersey-server

■ org.glassfish.jersey.containers:jersey-container-servlet-core

■ org.glassfish.jersey.containers:jersey-container-servlet

■ org.glassfish.jersey.ext:jersey-bean-validation
(excludes javax.el:javax.el-api, org.glassfish.web:javax.el)

■ org.glassfish.jersey.ext:jersey-spring3

■ org.glassfish.jersey.media:jersey-media-json-jackson

spring-boot-starter-jetty ■ org.eclipse.jetty:jetty-servlets

■ org.eclipse.jetty:jetty-webapp

■ org.eclipse.jetty.websocket:websocket-server

■ org.eclipse.jetty.websocket:javax-websocket-server-impl

spring-boot-starter-jooq ■ org.springframework.boot:spring-boot-starter

■ org.springframework.boot:spring-boot-starter-jdbc

■ org.springframework:spring-tx

■ org.jooq:jooq

spring-boot-starter-jta-atomikos ■ org.springframework.boot:spring-boot-starter

■ com.atomikos:transactions-jms

■ com.atomikos:transactions-jta
(excludes org.apache.geronimo.specs:geronimo-jta_1.0.1B_spec)

■ com.atomikos:transactions-jdbc

■ javax.transaction:javax.transaction-api

spring-boot-starter-jta-bitronix ■ org.springframework.boot:spring-boot-starter

■ javax.jms:jms-api

■ javax.transaction:javax.transaction-api

■ org.codehaus.btm:btm (excludes javax.transaction:jta)

spring-boot-starter-log4j ■ org.slf4j:jcl-over-slf4j

■ org.slf4j:jul-to-slf4j

■ org.slf4j:slf4j-log4j12

■ log4j:log4j

Table B.1 Spring Boot starters (continued)

Starter
(Group ID: org.springframework.boot)

Transitively depends on

Licensed to Thomas Snead <n.ordickan@gmail.com>

192 APPENDIX B Spring Boot starters

spring-boot-starter-log4j2 ■ org.apache.logging.log4j:log4j-slf4j-impl

■ org.apache.logging.log4j:log4j-api

■ org.apache.logging.log4j:log4j-core

■ org.slf4j:jcl-over-slf4j

■ org.slf4j:jul-to-slf4j

spring-boot-starter-logging ■ ch.qos.logback:logback-classic

■ org.slf4j:jcl-over-slf4j

■ org.slf4j:jul-to-slf4j

■ org.slf4j:log4j-over-slf4j

spring-boot-starter-mail ■ org.springframework.boot:spring-boot-starter

■ org.springframework:spring-context

■ org.springframework:spring-context-support

■ com.sun.mail:javax.mail

spring-boot-starter-mobile ■ org.springframework.boot:spring-boot-starter

■ org.springframework.boot:spring-boot-starter-web

■ org.springframework.mobile:spring-mobile-device

spring-boot-starter-mustache ■ org.springframework.boot:spring-boot-starter

■ org.springframework.boot:spring-boot-starter-web

■ com.samskivert:jmustache

spring-boot-starter-redis ■ org.springframework.boot:spring-boot-starter

■ org.springframework.data:spring-data-redis

■ redis.clients:jedis

spring-boot-starter-remote-shell ■ org.springframework.boot:spring-boot-starter

■ org.springframework.boot:spring-boot-starter-actuator

■ org.crashub:crash.cli

■ org.crashub:crash.connectors.ssh
(excludes org.codehaus.groovy:groovy-all)

■ org.crashub:crash.connectors.telnet (excludes javax.servlet:servlet-api, log4j
:log4j, commons-logging:commons-logging)

■ org.crashub:crash.embed.spring
(excludes org.springframework:spring-web, org.codehaus.groovy:groovy-all)

■ org.crashub:crash.plugins.cron (excludes org.codehaus.groovy:groovy-all)

■ org.crashub:crash.plugins.mail (excludes org.codehaus.groovy:groovy-all)

■ org.crashub:crash.shell (excludes org.codehaus.groovy:groovy-all)

■ org.codehaus.groovy:groovy

Table B.1 Spring Boot starters (continued)

Starter
(Group ID: org.springframework.boot)

Transitively depends on

Licensed to Thomas Snead <n.ordickan@gmail.com>

193APPENDIX B Spring Boot starters

spring-boot-starter-security ■ org.springframework.boot:spring-boot-starter

■ org.springframework:spring-aop

■ org.springframework.security:spring-security-config

■ org.springframework.security:spring-security-web

spring-boot-starter-social-facebook ■ org.springframework.boot:spring-boot-starter

■ org.springframework.boot:spring-boot-starter-web

■ org.springframework.social:spring-social-config

■ org.springframework.social:spring-social-core

■ org.springframework.social:spring-social-web

■ org.springframework.social:spring-social-facebook

spring-boot-starter-social-linkedin ■ org.springframework.boot:spring-boot-starter

■ org.springframework.boot:spring-boot-starter-web

■ org.springframework.social:spring-social-config

■ org.springframework.social:spring-social-core

■ org.springframework.social:spring-social-web

■ org.springframework.social:spring-social-linkedin

spring-boot-starter-social-twitter ■ org.springframework.boot:spring-boot-starter

■ org.springframework.boot:spring-boot-starter-web

■ org.springframework.social:spring-social-config

■ org.springframework.social:spring-social-core

■ org.springframework.social:spring-social-web

■ org.springframework.social:spring-social-twitter

spring-boot-starter-test ■ junit:junit

■ org.mockito:mockito-core

■ org.hamcrest:hamcrest-core

■ org.hamcrest:hamcrest-library

■ org.springframework:spring-core
(excludes commons-logging:commons-logging)

■ org.springframework:spring-test

spring-boot-starter-thymeleaf ■ org.springframework.boot:spring-boot-starter

■ org.springframework.boot:spring-boot-starter-web

■ org.thymeleaf:thymeleaf-spring4

■ nz.net.ultraq.thymeleaf:thymeleaf-layout-dialect

spring-boot-starter-tomcat ■ org.apache.tomcat.embed:tomcat-embed-core

■ org.apache.tomcat.embed:tomcat-embed-el

■ org.apache.tomcat.embed:tomcat-embed-logging-juli

■ org.apache.tomcat.embed:tomcat-embed-websocket

Table B.1 Spring Boot starters (continued)

Starter
(Group ID: org.springframework.boot)

Transitively depends on

Licensed to Thomas Snead <n.ordickan@gmail.com>

194 APPENDIX B Spring Boot starters

spring-boot-starter-undertow ■ io.undertow:undertow-core

■ io.undertow:undertow-servlet
(excludes org.jboss.spec.javax.servlet:jboss-servlet-api_3.1_spec)

■ io.undertow:undertow-websockets-jsr

■ javax.servlet:javax.servlet-api

■ org.glassfish:javax.el

spring-boot-starter-validation ■ org.springframework.boot:spring-boot-starter

■ org.apache.tomcat.embed:tomcat-embed-el

■ org.hibernate:hibernate-validator

spring-boot-starter-velocity ■ org.springframework.boot:spring-boot-starter

■ org.springframework.boot:spring-boot-starter-web

■ commons-beanutils:commons-beanutils

■ commons-collections:commons-collections

■ commons-digester:commons-digester

■ org.apache.velocity:velocity

■ org.apache.velocity:velocity-tools

■ org.springframework:spring-context-support

spring-boot-starter-web ■ org.springframework.boot:spring-boot-starter

■ org.springframework.boot:spring-boot-starter-tomcat

■ org.springframework.boot:spring-boot-starter-validation

■ com.fasterxml.jackson.core:jackson-databind

■ org.springframework:spring-web

■ org.springframework:spring-webmvc

spring-boot-starter-websocket ■ org.springframework.boot:spring-boot-starter

■ org.springframework.boot:spring-boot-starter-web

■ org.springframework:spring-messaging

■ org.springframework:spring-websocket

spring-boot-starter-ws ■ org.springframework.boot:spring-boot-starter

■ org.springframework.boot:spring-boot-starter-web

■ org.springframework:spring-jms

■ org.springframework:spring-oxm

■ org.springframework.ws:spring-ws-core

■ org.springframework.ws:spring-ws-support

Table B.1 Spring Boot starters (continued)

Starter
(Group ID: org.springframework.boot)

Transitively depends on

Licensed to Thomas Snead <n.ordickan@gmail.com>

195

appendix C
Configuration properties

Although Spring Boot handles a lot of the grunt work when it comes to configuring
the components in your application, you may want to fine-tune some of those com-
ponents. That’s where configuration properties come in handy.

 Chapter 3 describes the @ConfigurationProperties annotation and how it can
be used to expose properties that you can configure external to application code.
Just as you can use @ConfigurationProperties in components that you create,
many of Spring Boot’s auto-configured components are also annotated with
@ConfigurationProperties, making it possible to configure them via any
supported property source.

 For example, to specify the port that an embedded Tomcat or Jetty server
should listen for requests on, you can set the server.port property. This can be set
as a property in application.properties, in application.yml, in an operating system
environment variable, or any of the other options listed in section 3.2.

 This appendix lists all of the configuration properties offered by Spring Boot
components. Note that the applicability of these properties is dependent upon the
component being declared as a bean in the Spring application context (most likely
by way of auto-configuration). Setting a property for an inactive component will
have no effect.

■ flyway.baseline-description

The description to tag an existing schema with when executing baseline.

■ flyway.baseline-on-migrate

Whether to automatically call baseline when migrate is executed against a non-
empty schema with no metadata table. (Default value: false)

■ flyway.baseline-version

Sets the version to tag an existing schema with when executing baseline.
(Default value: 1)

Licensed to Thomas Snead <n.ordickan@gmail.com>

196 APPENDIX C Configuration properties

■ flyway.check-location

Check that migration scripts location exists. (Default value: false)

■ flyway.clean-on-validation-error

Whether to automatically call clean or not when a validation error occurs.
(Default value: false)

■ flyway.enabled

Enable flyway. (Default value: true)

■ flyway.encoding

Sets the SQL migration encoding. (Default value: UTF-8)

■ flyway.ignore-failed-future-migration

Whether to ignore failed future migrations when reading the metadata table.
(Default value: false)

■ flyway.init-sqls

SQL statements to execute to initialize a connection immediately after obtaining it.

■ flyway.locations

Locations of migrations scripts. (Default value: db/migration)

■ flyway.out-of-order

Whether or not “out of order” migrations are allowed. (Default value: false)

■ flyway.password

Login password of the database to migrate.

■ flyway.placeholder-prefix

Sets the prefix of every placeholder. (Default value: ${)

■ flyway.placeholder-replacement

Whether placeholders should be replaced. (Default value: true)

■ flyway.placeholder-suffix

Sets the prefix of every placeholder. (Default value: ${)

■ flyway.placeholders.[placeholder name]

Sets a placeholder value.

■ flyway.schemas

A case-sensitive list of schemes managed by Flyway. Defaults to the default schema
of the connection.

■ flyway.sql-migration-prefix

The filename prefix for SQL migrations. (Default value: V)

■ flyway.sql-migration-separator

The filename separator for SQL migrations. (Default value: __)

Licensed to Thomas Snead <n.ordickan@gmail.com>

197APPENDIX C Configuration properties

■ flyway.sql-migration-suffix

The filename suffix for SQL migrations. (Default value: .sql)

■ flyway.table

The name of the schema metadata table to be used by Flyway. (Default value:
schema_version)

■ flyway.target

The target version up to which Flyway should consider migrations. (Defaults to the
latest version)

■ flyway.url

JDBC URL of the database to migrate. If not set, the primary configured data
source is used.

■ flyway.user

Login user of the database to migrate.

■ flyway.validate-on-migrate

Whether to automatically validate when running migrate. (Default value: true)

■ liquibase.change-log

Change log configuration path. (Default value: classpath:/db/changelog/

db.changelog-master.yaml)

■ liquibase.check-change-log-location

Check that the change log location exists. (Default value: true)

■ liquibase.contexts

Comma-separated list of runtime contexts to use.

■ liquibase.default-schema

Default database schema.

■ liquibase.drop-first

Drop the database schema first. (Default value: false)

■ liquibase.enabled

Enable Liquibase support. (Default value: true)

■ liquibase.password

Login password of the database to migrate.

■ liquibase.url

JDBC URL of the database to migrate. If not set, the primary configured data
source is used.

■ liquibase.user

Login user of the database to migrate.

Licensed to Thomas Snead <n.ordickan@gmail.com>

198 APPENDIX C Configuration properties

■ multipart.enabled

Enable support of multi-part uploads. (Default value: true)

■ multipart.file-size-threshold

Threshold after which files will be written to disk. Values can use the suffixes “MB”
or “KB” to indicate a megabyte or kilobyte size. (Default value: 0)

■ multipart.location

Intermediate location of uploaded files.

■ multipart.max-file-size

Max file size. Values can use the suffixes “MB” or “KB” to indicate a megabyte or
kilobyte size. (Default value: 1MB)

■ multipart.max-request-size

Max request size. Values can use the suffixes “MB” or “KB” to indicate a megabyte
or kilobyte size. (Default value: 10MB)

■ security.basic.authorize-mode

Security authorize mode to apply.

■ security.basic.enabled

Enable basic authentication. (Default value: true)

■ security.basic.path

Comma-separated list of paths to secure. (Default value: [/**])

■ security.basic.realm

HTTP basic realm name. (Default value: Spring)

■ security.enable-csrf

Enable cross-site request forgery support. (Default value: false)

■ security.filter-order

Security filter chain order. (Default value: 0)

■ security.headers.cache

Enable cache control HTTP headers. (Default value: false)

■ security.headers.content-type

Enable X-Content-Type-Options header. (Default value: false)

■ security.headers.frame

Enable X-Frame-Options header. (Default value: false)

■ security.headers.hsts

HTTP Strict Transport Security (HSTS) mode (none, domain, all).

■ security.headers.xss

Enable cross-site scripting (XSS) protection. (Default value: false)

Licensed to Thomas Snead <n.ordickan@gmail.com>

199APPENDIX C Configuration properties

■ security.ignored

Comma-separated list of paths to exclude from the default secured paths.

■ security.oauth2.client.access-token-uri

The URI used to fetch an access token.

■ security.oauth2.client.access-token-validity-seconds

How long an access token is to be valid before expiring.

■ security.oauth2.client.additional-information.[key]

Set additional information that token granters would like to add to the token.

■ security.oauth2.client.authentication-scheme

The method for transmitting the bearer token. One of form, header, none, or
query. (Default value: header)

■ security.oauth2.client.authorities

The authorities to be granted to an authenticated client.

■ security.oauth2.client.authorized-grant-types

The grant types allowed to the client.

■ security.oauth2.client.auto-approve-scopes

The scope to automatically approve for a client.

■ security.oauth2.client.client-authentication-scheme

The method for transmitting authentication credentials when authenticating the
client. One of form, header, none, or query. (Default value: header)

■ security.oauth2.client.client-id

OAuth2 client ID.

■ security.oauth2.client.client-secret

OAuth2 client secret. A random secret is generated by default.

■ security.oauth2.client.grant-type

The grant type for obtaining an access token for this resource.

■ security.oauth2.client.id

The application’s client ID.

■ security.oauth2.client.pre-established-redirect-uri

The redirect URI that has been pre-established with the server. If present, the redi-
rect URI will be omitted from the user authorization request because the server
doesn’t need to know it.

■ security.oauth2.client.refresh-token-validity-seconds

How long a refresh token will be valid before expiring.

■ security.oauth2.client.registered-redirect-uri

Comma-separated list of redirect URIs registered for the client.

Licensed to Thomas Snead <n.ordickan@gmail.com>

200 APPENDIX C Configuration properties

■ security.oauth2.client.resource-ids

Comma-separated list of resource IDs associated with the client.

■ security.oauth2.client.scope

Scope assigned to the client.

■ security.oauth2.client.token-name

The token name.

■ security.oauth2.client.use-current-uri

Whether the current URI (if set) in the request should be used in preference to
the pre-established redirect URI. (Default value: true)

■ security.oauth2.client.user-authorization-uri

The URI to which the user is to be redirected to authorize an access token.

■ security.oauth2.resource.id

Identifier of the resource.

■ security.oauth2.resource.jwt.key-uri

The URI of the JWT token. Can be set if the value is not available and the key is
public.

■ security.oauth2.resource.jwt.key-value

The verification key of the JWT token. Can either be a symmetric secret or PEM-
encoded RSA public key. If the value is not available, you can set the URI instead.

■ security.oauth2.resource.prefer-token-info

Use the token info; can be set to false to use the user info. (Default value: true)

■ security.oauth2.resource.service-id

The service ID. (Default value: resource)

■ security.oauth2.resource.token-info-uri

URI of the token decoding endpoint.

■ security.oauth2.resource.token-type

The token type to send when using the userInfoUri.

■ security.oauth2.resource.user-info-uri

URI of the user endpoint.

■ security.oauth2.sso.filter-order

Filter order to apply if not providing an explicit WebSecurityConfigurerAdapter
(otherwise the order can be provided there instead).

■ security.oauth2.sso.login-path

Path to the login page—the page that triggers the redirect to the OAuth2 Authori-
zation Server. (Default value: /login)

Licensed to Thomas Snead <n.ordickan@gmail.com>

201APPENDIX C Configuration properties

■ security.require-ssl

Enable secure channel for all requests. (Default value: false)

■ security.sessions

Session creation policy. (Default values: always, never, if_required, stateless).

■ security.user.name

Default user name. (Default value: user)

■ security.user.password

Password for the default user name.

■ security.user.role

Granted roles for the default user name.

■ server.address

Network address to which the server should bind.

■ server.compression.enabled

Whether or not compression should be enabled. (Default value: false)

■ server.compression.excluded-user-agents

Comma-separated list of user agents for which responses should not be com-
pressed. (Default values: text/html,text/xml,text/plain,text/css)

■ server.compression.mime-types

Comma-separated list of MIME types that should be compressed.

■ server.compression.min-response-size

Minimum response size (in bytes) that is required for compression to be per-
formed. (Default value: 2048)

■ server.context-parameters.[param name]

Sets a servlet context parameter.

■ server.context-path

Context path of the application.

■ server.display-name

Display name of the application. (Default value: application)

■ server.jsp-servlet.class-name

The class name of the servlet to use for JSPs. (Default value: org.apache.jasper
.servlet.JspServlet)

■ server.jsp-servlet.init-parameters.[param name]

Sets a JSP servlet initialization parameter.

■ server.jsp-servlet.registered

Whether or not the JSP servlet should be registered with the embedded servlet
container. (Default value: true)

Licensed to Thomas Snead <n.ordickan@gmail.com>

202 APPENDIX C Configuration properties

■ server.port

Server HTTP port.

■ server.servlet-path

Path of the main dispatcher servlet. (Default value: /)

■ server.session.cookie.comment

Comment for the session cookie.

■ server.session.cookie.domain

Domain for the session cookie.

■ server.session.cookie.http-only

HttpOnly flag for the session cookie.

■ server.session.cookie.max-age

Maximum age of the session cookie in seconds.

■ server.session.cookie.name

Session cookie name.

■ server.session.cookie.path

Path of the session cookie.

■ server.session.cookie.secure

“Secure” flag for the session cookie.

■ server.session.persistent

Persist session data between restarts. (Default value: false)

■ server.session.timeout

Session timeout in seconds.

■ server.session.tracking-modes

Session tracking modes (one or more of the following: cookie, url, ssl).

■ server.ssl.ciphers

Supported SSL ciphers.

■ server.ssl.client-auth

Whether client authentication is wanted (want) or needed (need). Requires a trust store.

■ server.ssl.enabled

Whether SSL is enabled or not. (Default value: true)

■ server.ssl.key-alias

Alias that identifies the key in the key store.

■ server.ssl.key-password

Password used to access the key in the key store.

Licensed to Thomas Snead <n.ordickan@gmail.com>

203APPENDIX C Configuration properties

■ server.ssl.key-store

Path to the key store that holds the SSL certificate (typically a .jks file).

■ server.ssl.key-store-password

Password used to access the key store.

■ server.ssl.key-store-provider

Provider for the key store.

■ server.ssl.key-store-type

Type of the key store.

■ server.ssl.protocol

SSL protocol to use. (Default value: TLS)

■ server.ssl.trust-store

Trust store that holds SSL certificates.

■ server.ssl.trust-store-password

Password used to access the trust store.

■ server.ssl.trust-store-provider

Provider for the trust store.

■ server.ssl.trust-store-type

Type of the trust store.

■ server.tomcat.access-log-enabled

Whether or not the access log is enabled. (Default value: false)

■ server.tomcat.access-log-pattern

Format pattern for access logs. (Default value: common)

■ server.tomcat.accesslog.directory

Directory in which log files are created. Can be relative to the tomcat base dir or
absolute. (Default value: logs)

■ server.tomcat.accesslog.enabled

Enable access log. (Default value: false)

■ server.tomcat.accesslog.pattern

Format pattern for access logs. (Default value: common)

■ server.tomcat.accesslog.prefix

Log filename prefix. (Default value: access_log)

■ server.tomcat.accesslog.suffix

Log filename suffix. (Default value: .log)

■ server.tomcat.background-processor-delay

Delay in seconds between the invocation of backgroundProcess methods.
(Default value: 30)

Licensed to Thomas Snead <n.ordickan@gmail.com>

204 APPENDIX C Configuration properties

■ server.tomcat.basedir

Tomcat base directory. If not specified, a temporary directory will be used.

■ server.tomcat.internal-proxies

Regular expression that matches proxies that are to be trusted. Default:
“10\.\d{1,3}\.\d{1,3}\.\d{1,3}| 192\.168\.\d{1,3}\.\d{1,3}| 169\.254\.\d{1,3}\.\d{1,3}| 127\
.\d{1,3}\.\d{1,3}\.\d{1,3}| 172\.1[6-9]{1}\.\d{1,3}\.\d{1,3}| 172\.2[0-9]{1}\.\d{1,3}\.\d{1,3}|
172\.3[0-1]{1}\.\d{1,3}\.\d{1,3}”

■ server.tomcat.max-http-header-size

Maximum size in bytes of the HTTP message header. (Default value: 0)

■ server.tomcat.max-threads

Maximum number of worker threads. (Default value: 0)

■ server.tomcat.port-header

Name of the HTTP header used to override the original port value.

■ server.tomcat.protocol-header

Header that holds the incoming protocol, usually named X-Forwarded-Proto.
Configured as a RemoteIpValve only if remoteIpHeader is also set.

■ server.tomcat.protocol-header-https-value

Value of the protocol header that indicates that the incoming request uses SSL.
(Default value: https)

■ server.tomcat.remote-ip-header

Name of the HTTP header from which the remote IP is extracted. Configured as a
RemoteIpValve only if remoteIpHeader is also set.

■ server.tomcat.uri-encoding

Character encoding to use to decode the URI.

■ server.undertow.access-log-dir

Undertow access log directory. (Default value: logs)

■ server.undertow.access-log-enabled

Whether or not the access log is enabled. (Default value: false)

■ server.undertow.access-log-pattern

Format pattern for access logs. (Default value: common)

■ server.undertow.accesslog.dir

Undertow access log directory.

■ server.undertow.accesslog.enabled

Enable access log. (Default value: false)

■ server.undertow.accesslog.pattern

Format pattern for access logs. (Default value: common)

Licensed to Thomas Snead <n.ordickan@gmail.com>

205APPENDIX C Configuration properties

■ server.undertow.buffer-size

Size of each buffer in bytes.

■ server.undertow.buffers-per-region

Number of buffers per region.

■ server.undertow.direct-buffers

Allocate buffers outside the Java heap.

■ server.undertow.io-threads

Number of I/O threads to create for the worker.

■ server.undertow.worker-threads

Number of worker threads.

■ spring.activemq.broker-url

URL of the ActiveMQ broker. Auto-generated by default.

■ spring.activemq.in-memory

Specify if the default broker URL should be in memory. Ignored if an explicit bro-
ker has been specified. (Default value: true)

■ spring.activemq.password

Login password of the broker.

■ spring.activemq.pooled

Specify if a PooledConnectionFactory should be created instead of a regular
ConnectionFactory. (Default value: false)

■ spring.activemq.user

Login user of the broker.

■ spring.aop.auto

Add @EnableAspectJAutoProxy. (Default value: true)

■ spring.aop.proxy-target-class

Whether subclass-based (CGLIB) proxies are to be created (true) as opposed to
standard Java interface-based proxies (false). (Default value: false)

■ spring.application.admin.enabled

Enable admin features for the application. (Default value: false)

■ spring.application.admin.jmx-name

JMX name of the application admin MBean. (Default value: org.springframe-
work.boot:type=Admin,name=SpringApplication)

■ spring.artemis.embedded.cluster-password

Cluster password. Randomly generated on startup by default.

■ spring.artemis.embedded.data-directory

Journal file directory. Not necessary if persistence is turned off.

Licensed to Thomas Snead <n.ordickan@gmail.com>

206 APPENDIX C Configuration properties

■ spring.artemis.embedded.enabled

Enable embedded mode if the Artemis server APIs are available. (Default value:
true)

■ spring.artemis.embedded.persistent

Enable persistent store. (Default value: false)

■ spring.artemis.embedded.queues

Comma-separated list of queues to create on startup. (Default value: [])

■ spring.artemis.embedded.server-id

Server ID. By default, an auto-incremented counter is used. (Default value: 0)

■ spring.artemis.embedded.topics

Comma-separated list of topics to create on startup. (Default value: [])

■ spring.artemis.host

Artemis broker host. (Default value: localhost)

■ spring.artemis.mode

Artemis deployment mode, auto-detected by default. Can be explicitly set to
native or embedded.

■ spring.artemis.port

Artemis broker port. (Default value: 61616)

■ spring.autoconfigure.exclude

Auto-configuration classes to exclude.

■ spring.batch.initializer.enabled

Create the required batch tables on startup if necessary. (Default value: true)

■ spring.batch.job.enabled

Execute all Spring Batch jobs in the context on startup. (Default value: true)

■ spring.batch.job.names

Comma-separated list of job names to execute on startup. By default, all jobs
found in the context are executed.

■ spring.batch.schema

Path to the SQL file to use to initialize the database schema. (Default value:
classpath:org/springframework/batch/core/schema-@@platform@@.sql)

■ spring.batch.table-prefix

Table prefix for all the batch metadata tables.

■ spring.cache.cache-names

Comma-separated list of cache names to create if supported by the underlying
cache manager. Usually this disables the ability to create additional caches on the
fly.

Licensed to Thomas Snead <n.ordickan@gmail.com>

207APPENDIX C Configuration properties

■ spring.cache.ehcache.config

The location of the configuration file to use to initialize EhCache.

■ spring.cache.guava.spec

The spec to use to create caches. Check CacheBuilderSpec for more details on the
spec format.

■ spring.cache.hazelcast.config

The location of the configuration file to use to initialize Hazelcast.

■ spring.cache.infinispan.config

The location of the configuration file to use to initialize Infinispan.

■ spring.cache.jcache.config

The location of the configuration file to use to initialize the cache manager. The
configuration file is dependent on the underlying cache implementation.

■ spring.cache.jcache.provider

Fully qualified name of the CachingProvider implementation to use to retrieve the
JSR-107 compliant cache manager. Only needed if more than one JSR-107 imple-
mentation is available on the classpath.

■ spring.cache.type

Cache type, auto-detected according to the environment by default.

■ spring.dao.exceptiontranslation.enabled

Enable the PersistenceExceptionTranslationPostProcessor. (Default value:
true)

■ spring.data.elasticsearch.cluster-name

Elasticsearch cluster name. (Default value: elasticsearch)

■ spring.data.elasticsearch.cluster-nodes

Comma-separated list of cluster node addresses. If not specified, starts a client node.

■ spring.data.elasticsearch.properties

Additional properties used to configure the client.

■ spring.data.elasticsearch.repositories.enabled

Enable Elasticsearch repositories. (Default value: true)

■ spring.data.jpa.repositories.enabled

Enable JPA repositories. (Default value: true)

■ spring.data.mongodb.authentication-database

Authentication database name.

■ spring.data.mongodb.database

Database name.

Licensed to Thomas Snead <n.ordickan@gmail.com>

208 APPENDIX C Configuration properties

■ spring.data.mongodb.field-naming-strategy

Fully qualified name of the FieldNamingStrategy to use.

■ spring.data.mongodb.grid-fs-database

GridFS database name.

■ spring.data.mongodb.host

Mongo server host.

■ spring.data.mongodb.password

Login password of the Mongo server.

■ spring.data.mongodb.port

Mongo server port.

■ spring.data.mongodb.repositories.enabled

Enable Mongo repositories. (Default value: true)

■ spring.data.mongodb.uri

Mongo database URI. When set, the host and port are ignored. (Default value:
mongodb://localhost/test)

■ spring.data.mongodb.username

Login user of the Mongo server.

■ spring.data.rest.base-path

The base path to expose repository resources under.

■ spring.data.rest.default-page-size

The default size of a page in paged data. (Default value: 20)

■ spring.data.rest.limit-param-name

The name of the URL query string parameter that indicates how many results to
return at once. (Default value: size)

■ spring.data.rest.max-page-size

The maximum size of pages. (Default value: 1000)

■ spring.data.rest.page-param-name

The name of the URL query string parameter that indicates what page to return.
(Default value: page)

■ spring.data.rest.return-body-on-create

Whether to return a response body after creating an entity. (Default value: false)

■ spring.data.rest.return-body-on-update

Whether to return a response body after updating an entity. (Default value: false)

■ spring.data.rest.sort-param-name

The name of the URL query string parameter that indicates what direction to sort
results. (Default value: sort)

Licensed to Thomas Snead <n.ordickan@gmail.com>

209APPENDIX C Configuration properties

■ spring.data.solr.host

Solr host. Ignored if zk-host is set. (Default value: http://127.0.0.1:8983/solr)

■ spring.data.solr.repositories.enabled

Enable Solr repositories. (Default value: true)

■ spring.data.solr.zk-host

ZooKeeper host address in the form HOST:PORT.

■ spring.datasource.abandon-when-percentage-full

The percentage threshold above which connections that have been abandoned
(timed out) will be closed and reported.

■ spring.datasource.allow-pool-suspension

Whether or not pool suspension is allowed. There is a performance impact when
pool suspension is enabled. Unless you need it (for a redundancy system, for
example) do not enable it. This property only applies when using the Hikari data
pool. (Default value: false)

■ spring.datasource.alternate-username-allowed

Whether or not an alternate username is allowed.

■ spring.datasource.auto-commit

Whether or not updates are auto-committed.

■ spring.datasource.catalog

The default catalog name.

■ spring.datasource.commit-on-return

Whether or not the connection pool should commit any pending transaction
when a connection is returned.

■ spring.datasource.connection-init-sql

A SQL string that will be executed on all new connections when they are created,
before they are added to the connection pool.

■ spring.datasource.connection-init-sqls

A list of SQL statements to be executed when a physical connection is first created.
(For use with the DBCP connection pool.)

■ spring.datasource.connection-properties.[key]

Sets a property to be used when creating a connection. (For the DBCP connection
pool.)

■ spring.datasource.connection-test-query

A SQL query to be executed to test the validity of connections.

■ spring.datasource.connection-timeout

The connection timeout (in milliseconds).

Licensed to Thomas Snead <n.ordickan@gmail.com>

210 APPENDIX C Configuration properties

■ spring.datasource.continue-on-error

Do not stop if an error occurs while initializing the database. (Default value:
false)

■ spring.datasource.data

Data (DML) script resource reference.

■ spring.datasource.data-source-class-name

The fully qualified class name of the data source to use to get connections.

■ spring.datasource.data-source-jndi

The JNDI location of the data source to use to get connections.

■ spring.datasource.data-source-properties.[key]

Sets a property to be used when creating the data source. (For the Hikari connec-
tion pool.)

■ spring.datasource.db-properties

Sets a property to be used when creating the data source. (For the Tomcat connec-
tion pool.)

■ spring.datasource.default-auto-commit

Whether or not to auto-commit on connections.

■ spring.datasource.default-catalog

The default catalog for connections.

■ spring.datasource.default-read-only

The default read-only state for connections.

■ spring.datasource.default-transaction-isolation

The default transaction isolation for connections.

■ spring.datasource.driver-class-name

Fully qualified name of the JDBC driver. Auto-detected based on the URL by
default.

■ spring.datasource.fair-queue

Whether or not to return connections in a FIFO fashion.

■ spring.datasource.health-check-properties.[key]

Sets a property to be included in the health check. (For the Hikari connection
pool.)

■ spring.datasource.idle-timeout

The maximum amount of time (in milliseconds) that a connection is allowed to sit
idle in the pool. (Default value: 10)

Licensed to Thomas Snead <n.ordickan@gmail.com>

211APPENDIX C Configuration properties

■ spring.datasource.ignore-exception-on-pre-load

Whether or not to ignore connections while initializing the datasource pool.

■ spring.datasource.init-sql

A custom query to run when a connection is first created.

■ spring.datasource.initial-size

The number of connections that will be established when the connection pool is
started.

■ spring.datasource.initialization-fail-fast

Whether or not the construction of the pool should throw an exception if the min-
imum number of connections cannot be created. (Default value: true)

■ spring.datasource.initialize

Populate the database using data.sql. (Default value: true)

■ spring.datasource.isolate-internal-queries

Whether internal queries should be isolated. (Default value: false)

■ spring.datasource.jdbc-interceptors

A semicolon-separated list of classnames extending the JdbcInterceptor class.
These interceptors will be inserted as an interceptor into the chain of operations
on a java.sql.Connection object. (For the Tomcat connection pool.)

■ spring.datasource.jdbc-url

The JDBC URL to create connections with.

■ spring.datasource.jmx-enabled

Enable JMX support (if provided by the underlying pool). (Default value: false)

■ spring.datasource.jndi-name

JNDI location of the datasource. Class, URL, username, and password are ignored
when set.

■ spring.datasource.leak-detection-threshold

The threshold, in milliseconds, for detecting connection leaks with the Hikari
connection pool.

■ spring.datasource.log-abandoned

Whether to log stack traces for application code that abandoned a statement or
connection. For use with the DBCP connection pool. (Default value: false)

■ spring.datasource.log-validation-errors

Whether validation errors should be logged when using the Tomcat connection pool.

■ spring.datasource.login-timeout

The timeout (in seconds) for connecting to the database.

Licensed to Thomas Snead <n.ordickan@gmail.com>

212 APPENDIX C Configuration properties

■ spring.datasource.max-active

The maximum number of active connections in the connection pool.

■ spring.datasource.max-age

The maximum age of a connection in the connection pool.

■ spring.datasource.max-idle

The maximum number of idle connections in the connection pool.

■ spring.datasource.max-lifetime

The maximum lifetime (in milliseconds) of a connection in the connection pool.

■ spring.datasource.max-open-prepared-statements

The maximum number of open prepared statements.

■ spring.datasource.max-wait

The maximum number of milliseconds that the pool will wait for a connection to
be returned before throwing an exception.

■ spring.datasource.maximum-pool-size

The maximum size that the pool is allowed to reach, including both idle and in-use
connections.

■ spring.datasource.min-evictable-idle-time-millis

The minimum amount of time an object may sit idle in the pool before it is eligi-
ble for eviction by the idle object evictor (if any).

■ spring.datasource.min-idle

The minimum number of established connections that should be kept in the pool
at all times. (For DBCP and Tomcat connection pools.)

■ spring.datasource.minimum-idle

The minimum number of idle connections that HikariCP tries to maintain in the
pool.

■ spring.datasource.name

The datasource name.

■ spring.datasource.num-tests-per-eviction-run

The number of objects to examine during each run of the idle object evictor
thread (if any).

■ spring.datasource.password

Login password of the database.

■ spring.datasource.platform

Platform to use in the schema resource (schema-${platform}.sql). (Default value: all)

Licensed to Thomas Snead <n.ordickan@gmail.com>

213APPENDIX C Configuration properties

■ spring.datasource.pool-name

The connection pool name.

■ spring.datasource.pool-prepared-statements

Whether to pool statements or not.

■ spring.datasource.propagate-interrupt-state

Whether to propagate interrupt state for interrupted threads waiting for a connection.

■ spring.datasource.read-only

Set a datasource as read-only when using the Hikari connection pool.

■ spring.datasource.register-mbeans

Whether or not the Hikari connection pool should register JMX MBeans.

■ spring.datasource.remove-abandoned

Whether abandoned connections should be removed if they exceed the aban-
doned timeout.

■ spring.datasource.remove-abandoned-timeout

The time in seconds before a connection can be considered abandoned.

■ spring.datasource.rollback-on-return

Whether any pending transactions should be rolled back when a connection is
returned to the pool.

■ spring.datasource.schema

Schema (DDL) script resource reference.

■ spring.datasource.separator

Statement separator in SQL initialization scripts. (Default value: ;)

■ spring.datasource.sql-script-encoding

SQL scripts encoding.

■ spring.datasource.suspect-timeout

How long in seconds before logging a suspected abandoned connection.

■ spring.datasource.test-on-borrow

Whether a connection should be tested upon being borrowed from the connec-
tion pool.

■ spring.datasource.test-on-connect

Whether a connection should be tested upon creation.

■ spring.datasource.test-on-return

Whether a connection should be tested upon return to the connection pool.

■ spring.datasource.test-while-idle

Whether a connection should be tested while idle.

Licensed to Thomas Snead <n.ordickan@gmail.com>

214 APPENDIX C Configuration properties

■ spring.datasource.time-between-eviction-runs-millis

The number of milliseconds to sleep between runs of the idle connection valida-
tion, abandoned cleaner, and idle pool resizing.

■ spring.datasource.transaction-isolation

Set the default transaction isolation level when using the Hikari connection pool.

■ spring.datasource.url

JDBC URL of the database.

■ spring.datasource.use-disposable-connection-facade

Whether the connection will be wrapped with a facade that will disallow the
connection to be used after Connection.close() is called.

■ spring.datasource.use-equals

Whether to use String.equals() instead of == when comparing method names.

■ spring.datasource.use-lock

Whether a lock should be used when operations are performed on the connection
object.

■ spring.datasource.username

Login user of the database.

■ spring.datasource.validation-interval

How often, in milliseconds, to run connection validation.

■ spring.datasource.validation-query

The SQL query that will be used to validate connections from this pool before
returning them to the caller or pool.

■ spring.datasource.validation-query-timeout

The timeout in seconds before a connection validation query fails.

■ spring.datasource.validation-timeout

The timeout in seconds before a connection validation fails. (For use with the
Hikari connection pool.)

■ spring.datasource.validator-class-name

The fully qualified class name for an optional validator class that will be used in
place of test queries.

■ spring.datasource.xa.data-source-class-name

XA datasource fully qualified name.

■ spring.datasource.xa.properties

Properties to pass to the XA data source.

■ spring.freemarker.allow-request-override

Set whether HttpServletRequest attributes are allowed to override (hide)
controller-generated model attributes of the same name.

Licensed to Thomas Snead <n.ordickan@gmail.com>

215APPENDIX C Configuration properties

■ spring.freemarker.allow-session-override

Set whether HttpSession attributes are allowed to override (hide) controller-
generated model attributes of the same name.

■ spring.freemarker.cache

Enable template caching.

■ spring.freemarker.charset

Template encoding.

■ spring.freemarker.check-template-location

Check that the templates location exists.

■ spring.freemarker.content-type

Content-Type value.

■ spring.freemarker.enabled

Enable MVC view resolution for this technology.

■ spring.freemarker.expose-request-attributes

Set whether all request attributes should be added to the model prior to merging
with the template.

■ spring.freemarker.expose-session-attributes

Set whether all HttpSession attributes should be added to the model prior to
merging with the template.

■ spring.freemarker.expose-spring-macro-helpers

Set whether to expose a RequestContext for use by Spring’s macro library, under
the name springMacroRequestContext.

■ spring.freemarker.prefer-file-system-access

Prefer filesystem access for template loading. Filesystem access enables hot detec-
tion of template changes. (Default value: true)

■ spring.freemarker.prefix

Prefix that gets prepended to view names when building a URL.

■ spring.freemarker.request-context-attribute

Name of the RequestContext attribute for all views.

■ spring.freemarker.settings

Well-known FreeMarker keys that will be passed to FreeMarker’s configuration.

■ spring.freemarker.suffix

Suffix that gets appended to view names when building a URL.

■ spring.freemarker.template-loader-path

Comma-separated list of template paths. (Default value: ["classpath:/templates/"])

Licensed to Thomas Snead <n.ordickan@gmail.com>

216 APPENDIX C Configuration properties

■ spring.freemarker.view-names

Whitelist of view names that can be resolved.

■ spring.groovy.template.allow-request-override

Set whether HttpServletRequest attributes are allowed to override (hide)
controller-generated model attributes of the same name.

■ spring.groovy.template.allow-session-override

Set whether HttpSession attributes are allowed to override (hide) controller-
generated model attributes of the same name.

■ spring.groovy.template.cache

Enable template caching.

■ spring.groovy.template.charset

Template encoding.

■ spring.groovy.template.check-template-location

Check that the templates location exists.

■ spring.groovy.template.configuration.auto-escape

Whether or not model variables are escaped when rendered in the template.
(Default value: false)

■ spring.groovy.template.configuration.auto-indent

Whether or not the template renders indentation automatically. (Default value:
false)

■ spring.groovy.template.configuration.auto-indent-string

The string used for indentation when auto-indentation is enabled. Either SPACES
or TAB. (Default value: SPACES)

■ spring.groovy.template.configuration.auto-new-line

Whether or not new lines should be rendered by the template. (Default value:
false)

■ spring.groovy.template.configuration.base-template-class

The template base class.

■ spring.groovy.template.configuration.cache-templates

Whether or not templates should be cached. (Default value: true)

■ spring.groovy.template.configuration.declaration-encoding

The encoding used to write the declaration header.

■ spring.groovy.template.configuration.expand-empty-elements

Whether elements without a body should be written in the short form (e.g.,
)
or expanded form (e.g.,
</br>). (Default value: false)

Licensed to Thomas Snead <n.ordickan@gmail.com>

217APPENDIX C Configuration properties

■ spring.groovy.template.configuration.locale

Set the template locale.

■ spring.groovy.template.configuration.new-line-string

The string to render for a new line when auto-newlines are enabled. (Default is
the value of the system’s line.separator property)

■ spring.groovy.template.configuration.resource-loader-path

The path to the Groovy templates. (Default value: classpath:/templates/)

■ spring.groovy.template.configuration.use-double-quotes

Whether attributes should use double quotes or single quotes. (Default value:
false)

■ spring.groovy.template.content-type

Content-Type value.

■ spring.groovy.template.enabled

Enable MVC view resolution for this technology.

■ spring.groovy.template.expose-request-attributes

Set whether all request attributes should be added to the model prior to merging
with the template.

■ spring.groovy.template.expose-session-attributes

Set whether all HttpSession attributes should be added to the model prior to
merging with the template.

■ spring.groovy.template.expose-spring-macro-helpers

Set whether to expose a RequestContext for use by Spring’s macro library, under
the name springMacroRequestContext.

■ spring.groovy.template.prefix

Prefix that gets prepended to view names when building a URL.

■ spring.groovy.template.request-context-attribute

Name of the RequestContext attribute for all views.

■ spring.groovy.template.resource-loader-path

Template path. (Default value: classpath:/templates/)

■ spring.groovy.template.suffix

Suffix that gets appended to view names when building a URL.

■ spring.groovy.template.view-names

Whitelist of view names that can be resolved.

■ spring.h2.console.enabled

Enable the console. (Default value: false)

Licensed to Thomas Snead <n.ordickan@gmail.com>

218 APPENDIX C Configuration properties

■ spring.h2.console.path

Path at which the console will be available. (Default value: /h2-console)

■ spring.hateoas.apply-to-primary-object-mapper

Specify if HATEOAS support should be applied to the primary ObjectMapper.
(Default value: true)

■ spring.hornetq.embedded.cluster-password

Cluster password. Randomly generated on startup by default.

■ spring.hornetq.embedded.data-directory

Journal file directory. Not necessary if persistence is turned off.

■ spring.hornetq.embedded.enabled

Enable embedded mode if the HornetQ server APIs are available. (Default value:
true)

■ spring.hornetq.embedded.persistent

Enable persistent store. (Default value: false)

■ spring.hornetq.embedded.queues

Comma-separated list of queues to create on startup. (Default value: [])

■ spring.hornetq.embedded.server-id

Server ID. By default, an auto-incremented counter is used. (Default value: 0)

■ spring.hornetq.embedded.topics

Comma-separated list of topics to create on startup. (Default value: [])

■ spring.hornetq.host

HornetQ broker host. (Default value: localhost)

■ spring.hornetq.mode

HornetQ deployment mode, auto-detected by default. Can be explicitly set to
native or embedded.

■ spring.hornetq.port

HornetQ broker port. (Default value: 5445)

■ spring.http.converters.preferred-json-mapper

Preferred JSON mapper to use for HTTP message conversion.

■ spring.http.encoding.charset

Charset of HTTP requests and responses. Added to the Content-Type header if
not set explicitly. (Default value: UTF-8)

■ spring.http.encoding.enabled

Enable HTTP encoding support. (Default value: true)

Licensed to Thomas Snead <n.ordickan@gmail.com>

219APPENDIX C Configuration properties

■ spring.http.encoding.force

Force the encoding to the configured charset on HTTP requests and responses.
(Default value: true)

■ spring.jackson.date-format

Date format string (yyyy-MM-dd HH:mm:ss) or a fully qualified date format class name.

■ spring.jackson.deserialization

Jackson on/off features that affect the way Java objects are deserialized.

■ spring.jackson.generator

Jackson on/off features for generators.

■ spring.jackson.joda-date-time-format

Joda date/time format string (yyyy-MM-dd HH:mm:ss). If not configured, date-
format will be used as a fallback if it’s configured with a format string.

■ spring.jackson.locale

Locale used for formatting.

■ spring.jackson.mapper

Jackson general purpose on/off features.

■ spring.jackson.parser

Jackson on/off features for parsers.

■ spring.jackson.property-naming-strategy

One of the constants on Jackson’s PropertyNamingStrategy (CAMEL_CASE_TO
_LOWER_CASE_WITH_UNDERSCORES). Can also be a fully qualified class name of
a`PropertyNamingStrategy` subclass.

■ spring.jackson.serialization

Jackson on/off features that affect the way Java objects are serialized.

■ spring.jackson.serialization-inclusion

Controls the inclusion of properties during serialization. Configured with one of
the values in Jackson’s JsonInclude.Include enumeration.

■ spring.jackson.time-zone

Time zone used when formatting dates. Configured using any recognized time
zone identifier, such as America/Los_Angeles or GMT+10.

■ spring.jersey.filter.order

Jersey filter chain order. (Default value: 0)

■ spring.jersey.init

Init parameters to pass to Jersey via the servlet or filter.

■ spring.jersey.type

Jersey integration type. Can be either servlet or filter.

Licensed to Thomas Snead <n.ordickan@gmail.com>

220 APPENDIX C Configuration properties

■ spring.jms.jndi-name

Connection factory JNDI name. When set, takes precedence to others’ connection
factory auto-configurations.

■ spring.jms.listener.acknowledge-mode

Acknowledge mode of the container. By default, the listener is transacted with
automatic acknowledgment.

■ spring.jms.listener.auto-startup

Start the container automatically on startup. (Default value: true)

■ spring.jms.listener.concurrency

Minimum number of concurrent consumers.

■ spring.jms.listener.max-concurrency

Maximum number of concurrent consumers.

■ spring.jms.pub-sub-domain

Specify if the default destination type supports publish/subscribe (if it is a topic as
opposed to a queue). (Default value: false)

■ spring.jmx.default-domain

JMX domain name.

■ spring.jmx.enabled

Expose management beans to the JMX domain. (Default value: true)

■ spring.jmx.server

MBeanServer bean name. (Default value: mbeanServer)

■ spring.jooq.sql-dialect

SQLDialect JOOQ used when communicating with the configured datasource,
such as POSTGRES.

■ spring.jpa.database

Target database to operate on, auto-detected by default. Can be alternatively set
using the databasePlatform property.

■ spring.jpa.database-platform

Name of the target database to operate on, auto-detected by default. Can be alter-
natively set using the Database enum.

■ spring.jpa.generate-ddl

Initialize the schema on startup. (Default value: false)

■ spring.jpa.hibernate.ddl-auto

DDL mode (none, validate, update, create, create-drop). This is actually a
shortcut for the hibernate.hbm2ddl.auto property. Default to create-drop when
using an embedded database; none otherwise.

Licensed to Thomas Snead <n.ordickan@gmail.com>

221APPENDIX C Configuration properties

■ spring.jpa.hibernate.naming-strategy

The fully qualified class name of a Hibernate naming strategy.

■ spring.jpa.open-in-view

Register OpenEntityManagerInViewInterceptor. Binds a JPA EntityManager to
the thread for the entire processing of the request. (Default value: true)

■ spring.jpa.properties

Additional native properties to set on the JPA provider.

■ spring.jpa.show-sql

Enable logging of SQL statements when using the Bitronix Transaction Manager.
(Default value: false)

■ spring.jta.allow-multiple-lrc

Whether the transaction manager should allow enlistment of multiple LRC
resources in a single transaction when using the Bitronix Transaction Manager.
(Default value: false)

■ spring.jta.asynchronous2-pc

Whether two-phase commit should be executed asynchronously when using the
Bitronix Transaction Manager. (Default value: false)

■ spring.jta.background-recovery-interval

How often, in minutes, to run the recovery process when using the Bitronix Trans-
action Manager. (Default value: 1)

■ spring.jta.background-recovery-interval-seconds

How often, in seconds, to run the recovery process when using the Bitronix Trans-
action Manager. (Default value: 60)

■ spring.jta.current-node-only-recovery

Whether recovery should filter out recovered XIDs that don’t contain this JVM’s
unique ID when using the Bitronix Transaction Manager. (Default value: true)

■ spring.jta.debug-zero-resource-transaction

Whether creation and commit call stacks of transactions executed without a single
enlisted resource should be tracked and logged when using the Bitronix Transac-
tion Manager. (Default value: false)

■ spring.jta.default-transaction-timeout

The default transaction timeout, in seconds, when using the Bitronix Transaction
Manager. (Default value: 60)

■ spring.jta.disable-jmx

Whether the registration of JMX MBeans should be disabled when using the
Bitronix Transaction Manager. (Default value: false)

Licensed to Thomas Snead <n.ordickan@gmail.com>

222 APPENDIX C Configuration properties

■ spring.jta.enabled

Enable JTA support. (Default value: true)

■ spring.jta.exception-analyzer

The exception analyzer to use when using the Bitronix Transaction Manager. Can
be null for the default exception analyzer or the fully qualified class name of a
custom exception analyzer.

■ spring.jta.filter-log-status

Whether mandatory logs should be written when using the Bitronix Transaction
Manager. Enabling this parameter lowers space usage of the fragments but makes
debugging more complex. (Default value: false)

■ spring.jta.force-batching-enabled

Whether disk forces are batched when using the Bitronix Transaction Manager.
Disabling batching can seriously lower the transaction manager’s throughput.
(Default value: true)

■ spring.jta.forced-write-enabled

Whether logs are forced to disk when using the Bitronix Transaction Manager. Do
not set to false in production because without disk force, integrity is not guaran-
teed. (Default value: true)

■ spring.jta.graceful-shutdown-interval

Maximum number of seconds the transaction manager will wait for transactions to
be done before aborting them at shutdown time when using the Bitronix Transac-
tion Manager. (Default value: 60)

■ spring.jta.jndi-transaction-synchronization-registry-name

The name that the transaction synchronization registry should be bound under in
JNDI when using the Bitronix Transaction Manager. (Default value: java:comp/
TransactionSynchronizationRegistry)

■ spring.jta.jndi-user-transaction-name

The name the user transaction should be bound under in JNDI when using the
Bitronix Transaction Manager. (Default value: java:comp/UserTransaction)

■ spring.jta.journal

The journal name, when using the Bitronix Transaction Manager. Can be disk,
null, or a fully qualified class name. (Default value: disk)

■ spring.jta.log-dir

Transaction logs directory.

■ spring.jta.log-part1-filename

The journal fragment file 1 name. (Default value: btm1.tlog)

Licensed to Thomas Snead <n.ordickan@gmail.com>

223APPENDIX C Configuration properties

■ spring.jta.log-part2-filename

The journal fragment file 2 name. (Default value: btm2.tlog)

■ spring.jta.max-log-size-in-mb

The maximum size in megabytes of the journal fragments. Larger logs allow trans-
actions to stay longer in-doubt. If, however, the size is too small, the transaction
manager will pause longer when a fragment is full. For use with the Bitronix Trans-
action Manager. (Default value: 2)

■ spring.jta.resource-configuration-filename

The Bitronix Transaction Manager configuration filename.

■ spring.jta.server-id

The ID that uniquely identifies the Bitronix Transaction Manager instance.

■ spring.jta.skip-corrupted-logs

Whether corrupted log files should be skipped. (Default value: false)

■ spring.jta.transaction-manager-id

Transaction manager unique identifier.

■ spring.jta.warn-about-zero-resource-transaction

Whether to warn about transactions executed without a single enlisted resource
when using the Bitronix Transaction Manager. (Default value: true)

■ spring.mail.default-encoding

Default MimeMessage encoding. (Default value: UTF-8)

■ spring.mail.host

SMTP server host.

■ spring.mail.jndi-name

Session JNDI name. When set, takes precedence over any other mail settings.

■ spring.mail.password

Login password of the SMTP server.

■ spring.mail.port

SMTP server port.

■ spring.mail.properties

Additional JavaMail session properties.

■ spring.mail.protocol

Protocol used by the SMTP server. (Default value: smtp)

■ spring.mail.test-connection

Test that the mail server is available on startup. (Default value: false)

Licensed to Thomas Snead <n.ordickan@gmail.com>

224 APPENDIX C Configuration properties

■ spring.mail.username

Login user of the SMTP server.

■ spring.messages.basename

Comma-separated list of basenames, each following the ResourceBundle conven-
tion. Essentially a fully qualified classpath location. If it doesn’t contain a package
qualifier (such as org.mypackage), it will be resolved from the classpath root.
(Default value: messages)

■ spring.messages.cache-seconds

Loaded resource bundle files cache expiration, in seconds. When set to -1, bun-
dles are cached forever. (Default value: -1)

■ spring.messages.encoding

Message bundles encoding. (Default value: UTF-8)

■ spring.mobile.devicedelegatingviewresolver.enable-fallback

Enable support for fallback resolution. (Default value: false)

■ spring.mobile.devicedelegatingviewresolver.enabled

Enable device view resolver. (Default value: false)

■ spring.mobile.devicedelegatingviewresolver.mobile-prefix

Prefix that gets prepended to view names for mobile devices. (Default value:
mobile/)

■ spring.mobile.devicedelegatingviewresolver.mobile-suffix

Suffix that gets appended to view names for mobile devices.

■ spring.mobile.devicedelegatingviewresolver.normal-prefix

Prefix that gets prepended to view names for normal devices.

■ spring.mobile.devicedelegatingviewresolver.normal-suffix

Suffix that gets appended to view names for normal devices.

■ spring.mobile.devicedelegatingviewresolver.tablet-prefix

Prefix that gets prepended to view names for tablet devices. (Default value:
tablet/)

■ spring.mobile.devicedelegatingviewresolver.tablet-suffix

Suffix that gets appended to view names for tablet devices.

■ spring.mobile.sitepreference.enabled

Enable SitePreferenceHandler. (Default value: true)

■ spring.mongodb.embedded.features

Comma-separated list of features to enable.

■ spring.mongodb.embedded.version

Version of Mongo to use. (Default value: 2.6.10)

Licensed to Thomas Snead <n.ordickan@gmail.com>

225APPENDIX C Configuration properties

■ spring.mustache.cache

Enable template caching.

■ spring.mustache.charset

Template encoding.

■ spring.mustache.check-template-location

Check that the templates location exists.

■ spring.mustache.content-type

Content-Type value.

■ spring.mustache.enabled

Enable MVC view resolution for this technology.

■ spring.mustache.prefix

Prefix to apply to template names. (Default value: classpath:/templates/)

■ spring.mustache.suffix

Suffix to apply to template names. (Default value: .html)

■ spring.mustache.view-names

Whitelist of view names that can be resolved.

■ spring.mvc.async.request-timeout

Amount of time (in milliseconds) before asynchronous request handling times
out. If this value is not set, the default timeout of the underlying implementation
is used, such as 10 seconds on Tomcat with Servlet 3.

■ spring.mvc.date-format

Date format to use (such as dd/MM/yyyy).

■ spring.mvc.favicon.enabled

Enable resolution of favicon.ico. (Default value: true)

■ spring.mvc.ignore-default-model-on-redirect

If the content of the “default” model should be ignored during redirect scenarios.
(Default value: true)

■ spring.mvc.locale

Locale to use.

■ spring.mvc.message-codes-resolver-format

Formatting strategy for message codes (PREFIX_ERROR_CODE, POSTFIX_ERROR_CODE).

■ spring.mvc.view.prefix

Spring MVC view prefix.

■ spring.mvc.view.suffix

Spring MVC view suffix.

Licensed to Thomas Snead <n.ordickan@gmail.com>

226 APPENDIX C Configuration properties

■ spring.rabbitmq.addresses

Comma-separated list of addresses to which the client should connect.

■ spring.rabbitmq.dynamic

Create an AmqpAdmin bean. (Default value: true)

■ spring.rabbitmq.host

RabbitMQ host. (Default value: localhost)

■ spring.rabbitmq.listener.acknowledge-mode

Acknowledge mode of container.

■ spring.rabbitmq.listener.auto-startup

Start the container automatically on startup. (Default value: true)

■ spring.rabbitmq.listener.concurrency

Minimum number of consumers.

■ spring.rabbitmq.listener.max-concurrency

Maximum number of consumers.

■ spring.rabbitmq.listener.prefetch

Number of messages to be handled in a single request. It should be greater than
or equal to the transaction size (if used).

■ spring.rabbitmq.listener.transaction-size

Number of messages to be processed in a transaction. For best results, it should be
less than or equal to the prefetch count.

■ spring.rabbitmq.password

Login to authenticate against the broker.

■ spring.rabbitmq.port

RabbitMQ port. (Default value: 5672)

■ spring.rabbitmq.requested-heartbeat

Requested heartbeat timeout in seconds; 0 for none.

■ spring.rabbitmq.ssl.enabled

Enable SSL support. (Default value: false)

■ spring.rabbitmq.ssl.key-store

Path to the key store that holds the SSL certificate.

■ spring.rabbitmq.ssl.key-store-password

Password used to access the key store.

■ spring.rabbitmq.ssl.trust-store

Trust store that holds SSL certificates.

Licensed to Thomas Snead <n.ordickan@gmail.com>

227APPENDIX C Configuration properties

■ spring.rabbitmq.ssl.trust-store-password

Password used to access the trust store.

■ spring.rabbitmq.username

Login user to authenticate to the broker.

■ spring.rabbitmq.virtual-host

Virtual host to use when connecting to the broker.

■ spring.redis.database

Database index used by the connection factory. (Default value: 0)

■ spring.redis.host

Redis server host. (Default value: localhost)

■ spring.redis.password

Login password of the Redis server.

■ spring.redis.pool.max-active

Max number of connections that can be allocated by the pool at a given time. Use
a negative value for no limit. (Default value: 8)

■ spring.redis.pool.max-idle

Max number of idle connections in the pool. Use a negative value to indicate an
unlimited number of idle connections. (Default value: 8)

■ spring.redis.pool.max-wait

Maximum amount of time (in milliseconds) a connection allocation should block
before throwing an exception when the pool is exhausted. Use a negative value to
block indefinitely. (Default value: -1)

■ spring.redis.pool.min-idle

Target for the minimum number of idle connections to maintain in the pool. This
setting only has an effect if it is positive. (Default value: 0)

■ spring.redis.port

Redis server port. (Default value: 6379)

■ spring.redis.sentinel.master

Name of Redis server.

■ spring.redis.sentinel.nodes

Comma-separated list of host:port pairs.

■ spring.redis.timeout

Connection timeout in milliseconds. (Default value: 0)

■ spring.resources.add-mappings

Enable default resource handling. (Default value: true)

Licensed to Thomas Snead <n.ordickan@gmail.com>

228 APPENDIX C Configuration properties

■ spring.resources.cache-period

Cache period for the resources served by the resource handler, in seconds.

■ spring.resources.chain.cache

Enable caching in the resource chain. (Default value: true)

■ spring.resources.chain.enabled

Enable the Spring resource handling chain. (Disabled by default unless at least
one strategy has been enabled.)

■ spring.resources.chain.html-application-cache

Enable HTML5 application cache manifest rewriting. (Default value: false)

■ spring.resources.chain.strategy.content.enabled

Enable the content version strategy. (Default value: false)

■ spring.resources.chain.strategy.content.paths

Comma-separated list of patterns to apply to the version strategy. (Default value:
[/**])

■ spring.resources.chain.strategy.fixed.enabled

Enable the fixed version strategy. (Default value: false)

■ spring.resources.chain.strategy.fixed.paths

Comma-separated list of patterns to apply to the version strategy.

■ spring.resources.chain.strategy.fixed.version

Version string to use for the version strategy.

■ spring.resources.static-locations

Locations of static resources. Defaults to classpath:[/META-INF/resources/,
/resources/, /static/, /public/] plus context:/ (the root of the servlet
context).

■ spring.sendgrid.password

SendGrid password.

■ spring.sendgrid.proxy.host

SendGrid proxy host.

■ spring.sendgrid.proxy.port

SendGrid proxy port.

■ spring.sendgrid.username

SendGrid username.

■ spring.social.auto-connection-views

Enable the connection status view for supported providers. (Default value: false)

■ spring.social.facebook.app-id

Application ID.

Licensed to Thomas Snead <n.ordickan@gmail.com>

229APPENDIX C Configuration properties

■ spring.social.facebook.app-secret

Application secret.

■ spring.social.linkedin.app-id

Application ID.

■ spring.social.linkedin.app-secret

Application secret.

■ spring.social.twitter.app-id

Application ID.

■ spring.social.twitter.app-secret

Application secret.

■ spring.thymeleaf.cache

Enable template caching. (Default value: true)

■ spring.thymeleaf.check-template-location

Check that the templates location exists. (Default value: true)

■ spring.thymeleaf.content-type

Content-Type value. (Default value: text/html)

■ spring.thymeleaf.enabled

Enable MVC Thymeleaf view resolution. (Default value: true)

■ spring.thymeleaf.encoding

Template encoding. (Default value: UTF-8)

■ spring.thymeleaf.excluded-view-names

Comma-separated list of view names that should be excluded from resolution.

■ spring.thymeleaf.mode

Template mode to be applied to templates. See also StandardTemplateModeHandlers.
(Default value: HTML5)

■ spring.thymeleaf.prefix

Prefix that gets prepended to view names when building a URL. (Default value:
classpath:/templates/)

■ spring.thymeleaf.suffix

Suffix that gets appended to view names when building a URL. (Default value:
.html)

■ spring.thymeleaf.template-resolver-order

Order of the template resolver in the chain. By default, the template resolver is
first in the chain. Ordering starts at 1 and should only be set if you have defined
additional TemplateResolver beans.

Licensed to Thomas Snead <n.ordickan@gmail.com>

230 APPENDIX C Configuration properties

■ spring.thymeleaf.view-names

Comma-separated list of view names that can be resolved.

■ spring.velocity.allow-request-override

Set whether HttpServletRequest attributes are allowed to override (hide)
controller-generated model attributes of the same name.

■ spring.velocity.allow-session-override

Set whether HttpSession attributes are allowed to override (hide) controller-
generated model attributes of the same name.

■ spring.velocity.cache

Enable template caching.

■ spring.velocity.charset

Template encoding.

■ spring.velocity.check-template-location

Check that the templates location exists.

■ spring.velocity.content-type

Content-Type value.

■ spring.velocity.date-tool-attribute

Name of the DateTool helper object to expose in the Velocity context of the view.

■ spring.velocity.enabled

Enable MVC view resolution for this technology.

■ spring.velocity.expose-request-attributes

Set whether all request attributes should be added to the model prior to merging
with the template.

■ spring.velocity.expose-session-attributes

Set whether all HttpSession attributes should be added to the model prior to
merging with the template.

■ spring.velocity.expose-spring-macro-helpers

Set whether to expose a RequestContext for use by Spring’s macro library, under
the name springMacroRequestContext.

■ spring.velocity.number-tool-attribute

Name of the NumberTool helper object to expose in the Velocity context of the
view.

■ spring.velocity.prefer-file-system-access

Prefer filesystem access for template loading. Filesystem access enables hot detec-
tion of template changes. (Default value: true)

Licensed to Thomas Snead <n.ordickan@gmail.com>

231APPENDIX C Configuration properties

■ spring.velocity.prefix

Prefix that gets prepended to view names when building a URL.

■ spring.velocity.properties

Additional velocity properties.

■ spring.velocity.request-context-attribute

Name of the RequestContext attribute for all views.

■ spring.velocity.resource-loader-path

Template path. (Default value: classpath:/templates/)

■ spring.velocity.suffix

Suffix that gets appended to view names when building a URL.

■ spring.velocity.toolbox-config-location

Velocity Toolbox config location, such as /WEB-INF/toolbox.xml. Automatically
loads a Velocity Tools toolbox definition file and exposes all defined tools in the
specified scopes.

■ spring.velocity.view-names

Whitelist of view names that can be resolved.

■ spring.view.prefix

Spring MVC view prefix.

■ spring.view.suffix

Spring MVC view suffix.

Licensed to Thomas Snead <n.ordickan@gmail.com>

232

appendix D
Spring Boot dependencies

Whether you’re building your project with Maven or Gradle or you’re working with
the Spring Boot CLI, Spring Boot provides dependency management support for
several libraries that are commonly used in Spring applications. Table D.1 lists all of
the library dependencies supported by Spring Boot version 1.3.0.

 In many cases, these dependencies will automatically be added to your project’s
build and classpath by one of the Spring Boot starters (described in appendix A).
If, however, you need a library that isn’t covered by the starters you’re using, you
can explicitly declare the dependency in your Maven or Gradle build specification.

 For instance, suppose you want to include the H2 embedded database in your
project. In a Gradle build, you’d need to declare the following:

compile("com.h2database:h2")

The same dependency can be declared in a Maven build like this:

<dependency>
<groupId>com.h2database</groupId>
<version>h2</version>

</dependency>

Notice that in both cases, you shouldn’t need to specify the version. Spring Boot’s
dependency management will take care of that for you. You may, however, explicitly
provide the version if you want to override the version chosen by Spring Boot.

 If you’re using the Spring Boot CLI to run your application, you can use the
@Grab annotation from Groovy like this:

@Grab("h2")

When using the @Grab annotation to include any of the libraries in table D.1, you
only need to specify the artifact. Spring Boot extends @Grab to infer the group and
version for you.

Licensed to Thomas Snead <n.ordickan@gmail.com>

233APPENDIX D Spring Boot dependencies

Table D.1 Library dependencies supported by Spring Boot

Group Artifact Version

antlr antlr 2.7.7

ch.qos.logback logback-access 1.1.3

ch.qos.logback logback-classic 1.1.3

com.atomikos transactions-jdbc 3.9.3

com.atomikos transactions-jms 3.9.3

com.atomikos transactions-jta 3.9.3

com.fasterxml.jackson.core jackson-annotations 2.6.3

com.fasterxml.jackson.core jackson-core 2.6.3

com.fasterxml.jackson.core jackson-databind 2.6.3

com.fasterxml.jackson.dataformat jackson-dataformat-csv 2.6.3

com.fasterxml.jackson.dataformat jackson-dataformat-xml 2.6.3

com.fasterxml.jackson.dataformat jackson-dataformat-yaml 2.6.3

com.fasterxml.jackson.datatype jackson-datatype-hibernate4 2.6.3

com.fasterxml.jackson.datatype jackson-datatype-hibernate5 2.6.3

com.fasterxml.jackson.datatype jackson-datatype-jdk7 2.6.3

com.fasterxml.jackson.datatype jackson-datatype-jdk8 2.6.3

com.fasterxml.jackson.datatype jackson-datatype-joda 2.6.3

com.fasterxml.jackson.datatype jackson-datatype-jsr310 2.6.3

com.fasterxml.jackson.module jackson-module-parameter-names 2.6.3

com.gemstone.gemfire gemfire 8.1.0

com.github.mxab.thymeleaf.extras thymeleaf-extras-data-attribute 1.3

com.google.code.gson gson 2.3.1

com.googlecode.json-simple json-simple 1.1.1

com.h2database h2 1.4.190

com.hazelcast hazelcast 3.5.3

com.hazelcast hazelcast-spring 3.5.3

com.jayway.jsonpath json-path 2.0.0

com.jayway.jsonpath json-path-assert 2.0.0

com.samskivert jmustache 1.11

com.sendgrid sendgrid-java 2.2.2

Licensed to Thomas Snead <n.ordickan@gmail.com>

234 APPENDIX D Spring Boot dependencies

com.sun.mail javax.mail 1.5.4

com.timgroup java-statsd-client 3.1.0

com.zaxxer HikariCP 2.4.2

com.zaxxer HikariCP-java6 2.3.12

commons-beanutils commons-beanutils 1.9.2

commons-collections commons-collections 3.2.1

commons-dbcp commons-dbcp 1.4

commons-digester commons-digester 2.1

commons-pool commons-pool 1.6

de.flapdoodle.embed de.flapdoodle.embed.mongo 1.50.0

io.dropwizard.metrics metrics-core 3.1.2

io.dropwizard.metrics metrics-ganglia 3.1.2

io.dropwizard.metrics metrics-graphite 3.1.2

io.dropwizard.metrics metrics-servlets 3.1.2

io.projectreactor reactor-bus 2.0.7.RELEASE

io.projectreactor reactor-core 2.0.7.RELEASE

io.projectreactor reactor-groovy 2.0.7.RELEASE

io.projectreactor reactor-groovy-extensions 2.0.7.RELEASE

io.projectreactor reactor-logback 2.0.7.RELEASE

io.projectreactor reactor-net 2.0.7.RELEASE

io.projectreactor reactor-stream 2.0.7.RELEASE

io.projectreactor.spring reactor-spring-context 2.0.6.RELEASE

io.projectreactor.spring reactor-spring-core 2.0.6.RELEASE

io.projectreactor.spring reactor-spring-messaging 2.0.6.RELEASE

io.projectreactor.spring reactor-spring-webmvc 2.0.6.RELEASE

io.undertow undertow-core 1.3.5.Final

io.undertow undertow-servlet 1.3.5.Final

io.undertow undertow-websockets-jsr 1.3.5.Final

javax.cache cache-api 1.0.0

javax.jms jms-api 1.1-rev-1

Table D.1 Library dependencies supported by Spring Boot (continued)

Group Artifact Version

Licensed to Thomas Snead <n.ordickan@gmail.com>

235APPENDIX D Spring Boot dependencies

javax.mail javax.mail-api 1.5.4

javax.servlet javax.servlet-api 3.1.0

javax.servlet jstl 1.2

javax.transaction javax.transaction-api 1.2

jaxen jaxen 1.1.6

joda-time joda-time 2.8.2

junit junit 4.12

log4j log4j 1.2.17

mysql mysql-connector-java 5.1.37

net.sf.ehcache ehcache 2.10.1

net.sourceforge.nekohtml nekohtml 1.9.22

nz.net.ultraq.thymeleaf thymeleaf-layout-dialect 1.3.1

org.apache.activemq activemq-amqp 5.12.1

org.apache.activemq activemq-blueprint 5.12.1

org.apache.activemq activemq-broker 5.12.1

org.apache.activemq activemq-camel 5.12.1

org.apache.activemq activemq-client 5.12.1

org.apache.activemq activemq-console 5.12.1

org.apache.activemq activemq-http 5.12.1

org.apache.activemq activemq-jaas 5.12.1

org.apache.activemq activemq-jdbc-store 5.12.1

org.apache.activemq activemq-jms-pool 5.12.1

org.apache.activemq activemq-kahadb-store 5.12.1

org.apache.activemq activemq-karaf 5.12.1

org.apache.activemq activemq-leveldb-store 5.12.1

org.apache.activemq activemq-log4j-appender 5.12.1

org.apache.activemq activemq-mqtt 5.12.1

org.apache.activemq activemq-openwire-generator 5.12.1

org.apache.activemq activemq-openwire-legacy 5.12.1

org.apache.activemq activemq-osgi 5.12.1

Table D.1 Library dependencies supported by Spring Boot (continued)

Group Artifact Version

Licensed to Thomas Snead <n.ordickan@gmail.com>

236 APPENDIX D Spring Boot dependencies

org.apache.activemq activemq-partition 5.12.1

org.apache.activemq activemq-pool 5.12.1

org.apache.activemq activemq-ra 5.12.1

org.apache.activemq activemq-run 5.12.1

org.apache.activemq activemq-runtime-config 5.12.1

org.apache.activemq activemq-shiro 5.12.1

org.apache.activemq activemq-spring 5.12.1

org.apache.activemq activemq-stomp 5.12.1

org.apache.activemq activemq-web 5.12.1

org.apache.activemq artemis-jms-client 1.1.0

org.apache.activemq artemis-jms-server 1.1.0

org.apache.commons commons-dbcp2 2.1.1

org.apache.commons commons-pool2 2.4.2

org.apache.derby derby 10.12.1.1

org.apache.httpcomponents httpasyncclient 4.1.1

org.apache.httpcomponents httpclient 4.5.1

org.apache.httpcomponents httpcore 4.4.4

org.apache.httpcomponents httpmime 4.5.1

org.apache.logging.log4j log4j-api 2.4.1

org.apache.logging.log4j log4j-core 2.4.1

org.apache.logging.log4j log4j-slf4j-impl 2.4.1

org.apache.solr solr-solrj 4.10.4

org.apache.tomcat.embed tomcat-embed-core 8.0.28

org.apache.tomcat.embed tomcat-embed-el 8.0.28

org.apache.tomcat.embed tomcat-embed-jasper 8.0.28

org.apache.tomcat.embed tomcat-embed-logging-juli 8.0.28

org.apache.tomcat.embed tomcat-embed-websocket 8.0.28

org.apache.tomcat tomcat-jdbc 8.0.28

org.apache.tomcat tomcat-jsp-api 8.0.28

org.apache.velocity velocity 1.7

Table D.1 Library dependencies supported by Spring Boot (continued)

Group Artifact Version

Licensed to Thomas Snead <n.ordickan@gmail.com>

237APPENDIX D Spring Boot dependencies

org.apache.velocity velocity-tools 2.0

org.aspectj aspectjrt 1.8.7

org.aspectj aspectjtools 1.8.7

org.aspectj aspectjweaver 1.8.7

org.codehaus.btm btm 2.1.4

org.codehaus.groovy groovy 2.4.4

org.codehaus.groovy groovy-all 2.4.4

org.codehaus.groovy groovy-ant 2.4.4

org.codehaus.groovy groovy-bsf 2.4.4

org.codehaus.groovy groovy-console 2.4.4

org.codehaus.groovy groovy-docgenerator 2.4.4

org.codehaus.groovy groovy-groovydoc 2.4.4

org.codehaus.groovy groovy-groovysh 2.4.4

org.codehaus.groovy groovy-jmx 2.4.4

org.codehaus.groovy groovy-json 2.4.4

org.codehaus.groovy groovy-jsr223 2.4.4

org.codehaus.groovy groovy-nio 2.4.4

org.codehaus.groovy groovy-servlet 2.4.4

org.codehaus.groovy groovy-sql 2.4.4

org.codehaus.groovy groovy-swing 2.4.4

org.codehaus.groovy groovy-templates 2.4.4

org.codehaus.groovy groovy-test 2.4.4

org.codehaus.groovy groovy-testng 2.4.4

org.codehaus.groovy groovy-xml 2.4.4

org.codehaus.janino janino 2.7.8

org.crashub crash.cli 1.3.2

org.crashub crash.connectors.ssh 1.3.2

org.crashub crash.connectors.telnet 1.3.2

org.crashub crash.embed.spring 1.3.2

org.crashub crash.plugins.cron 1.3.2

Table D.1 Library dependencies supported by Spring Boot (continued)

Group Artifact Version

Licensed to Thomas Snead <n.ordickan@gmail.com>

238 APPENDIX D Spring Boot dependencies

org.crashub crash.plugins.mail 1.3.2

org.crashub crash.shell 1.3.2

org.eclipse.jetty jetty-annotations 9.2.14.v20151106

org.eclipse.jetty jetty-continuation 9.2.14.v20151106

org.eclipse.jetty jetty-deploy 9.2.14.v20151106

org.eclipse.jetty jetty-http 9.2.14.v20151106

org.eclipse.jetty jetty-io 9.2.14.v20151106

org.eclipse.jetty jetty-jsp 9.2.14.v20151106

org.eclipse.jetty jetty-jmx 9.2.14.v20151106

org.eclipse.jetty jetty-plus 9.2.14.v20151106

org.eclipse.jetty jetty-security 9.2.14.v20151106

org.eclipse.jetty jetty-server 9.2.14.v20151106

org.eclipse.jetty jetty-servlet 9.2.14.v20151106

org.eclipse.jetty jetty-servlets 9.2.14.v20151106

org.eclipse.jetty jetty-util 9.2.14.v20151106

org.eclipse.jetty jetty-webapp 9.2.14.v20151106

org.eclipse.jetty jetty-xml 9.2.14.v20151106

org.eclipse.jetty.orbit javax.servlet.jsp 2.2.0.v201112011158

org.eclipse.jetty.websocket javax-websocket-server-impl 9.2.14.v20151106

org.eclipse.jetty.websocket websocket-server 9.2.14.v20151106

org.elasticsearch elasticsearch 1.5.2

org.firebirdsql.jdbc jaybird-jdk16 2.2.9

org.firebirdsql.jdbc jaybird-jdk17 2.2.9

org.firebirdsql.jdbc jaybird-jdk18 2.2.9

org.flywaydb flyway-core 3.2.1

org.freemarker freemarker 2.3.23

org.glassfish javax.el 3.0.0

org.glassfish.jersey.containers jersey-container-servlet 2.19

org.glassfish.jersey.containers jersey-container-servlet-core 2.19

org.glassfish.jersey.core jersey-server 2.22.1

Table D.1 Library dependencies supported by Spring Boot (continued)

Group Artifact Version

Licensed to Thomas Snead <n.ordickan@gmail.com>

239APPENDIX D Spring Boot dependencies

org.glassfish.jersey.ext jersey-bean-validation 2.22.1

org.glassfish.jersey.ext jersey-spring3 2.22.1

org.glassfish.jersey.media jersey-media-json-jackson 2.22.1

org.hamcrest hamcrest-core 1.3

org.hamcrest hamcrest-library 1.3

org.hibernate hibernate-core 4.3.11.Final

org.hibernate hibernate-ehcache 4.3.11.Final

org.hibernate hibernate-entitymanager 4.3.11.Final

org.hibernate hibernate-envers 4.3.11.Final

org.hibernate hibernate-jpamodelgen 4.3.11.Final

org.hibernate hibernate-validator 5.2.2.Final

org.hibernate hibernate-validator-annotation-processor 5.2.2.Final

org.hornetq hornetq-jms-client 2.4.7.Final

org.hornetq hornetq-jms-server 2.4.7.Final

org.hsqldb hsqldb 2.3.3

org.infinispan infinispan-jcache 8.0.1.Final

org.infinispan infinispan-spring4 8.0.1.Final

org.javassist javassist 3.18.1-GA

org.jdom jdom2 2.0.6

org.jolokia jolokia-core 1.3.2

org.json json 20140107

org.jooq jooq 3.7.1

org.jooq jooq-meta 3.7.1

org.jooq jooq-codegen 3.7.1

org.liquibase liquibase-core 3.4.1

org.mariadb.jdbc mariadb-java-client 1.2.3

org.mockito mockito-core 1.10.19

org.mongodb mongo-java-driver 2.13.3

org.postgresql postgresql 9.4-1205-jdbc41

org.skyscreamer jsonassert 1.2.3

Table D.1 Library dependencies supported by Spring Boot (continued)

Group Artifact Version

Licensed to Thomas Snead <n.ordickan@gmail.com>

240 APPENDIX D Spring Boot dependencies

org.slf4j jcl-over-slf4j 1.7.13

org.slf4j jul-to-slf4j 1.7.13

org.slf4j log4j-over-slf4j 1.7.13

org.slf4j slf4j-api 1.7.13

org.slf4j slf4j-jdk14 1.7.13

org.slf4j slf4j-log4j12 1.7.13

org.slf4j slf4j-simple 1.7.13

org.spockframework spock-core 1.0-groovy-2.4

org.spockframework spock-spring 1.0-groovy-2.4

org.springframework spring-core 4.2.3.RELEASE

org.springframework spring-framework-bom 4.2.3.RELEASE

org.springframework springloaded 1.2.4.RELEASE

org.springframework.amqp spring-amqp 1.5.2.RELEASE

org.springframework.amqp spring-rabbit 1.5.2.RELEASE

org.springframework.batch spring-batch-core 3.0.5.RELEASE

org.springframework.batch spring-batch-infrastructure 3.0.5.RELEASE

org.springframework.batch spring-batch-integration 3.0.5.RELEASE

org.springframework.batch spring-batch-test 3.0.5.RELEASE

org.springframework.cloud spring-cloud-cloudfoundry-connector 1.2.0.RELEASE

org.springframework.cloud spring-cloud-core 1.2.0.RELEASE

org.springframework.cloud spring-cloud-heroku-connector 1.2.0.RELEASE

org.springframework.cloud spring-cloud-localconfig-connector 1.2.0.RELEASE

org.springframework.cloud spring-cloud-spring-service-connector 1.2.0.RELEASE

org.springframework.data spring-data-releasetrain Gosling-SR1RELEASE

org.springframework.hateoas spring-hateoas 0.19.0.RELEASE

org.springframework.integration spring-integration-bom 4.2.1.RELEASE

org.springframework.integration spring-integration-http 4.2.1.RELEASE

org.springframework.mobile spring-mobile-device 1.1.5.RELEASE

org.springframework.plugin spring-plugin-core 1.2.0.RELEASE

org.springframework.retry spring-retry 1.1.2.RELEASE

Table D.1 Library dependencies supported by Spring Boot (continued)

Group Artifact Version

Licensed to Thomas Snead <n.ordickan@gmail.com>

241APPENDIX D Spring Boot dependencies

org.springframework.security spring-security-bom 4.0.3.RELEASE

org.springframework.security spring-security-jwt 1.0.3.RELEASE

org.springframework
.security.oauth

spring-security-oauth 2.0.8.RELEASE

org.springframework
.security.oauth

spring-security-oauth2 2.0.8.RELEASE

org.springframework.session spring-session 1.0.2.RELEASE

org.springframework.session spring-session-data-redis 1.0.2.RELEASE

org.springframework.social spring-social-config 1.1.3.RELEASE

org.springframework.social spring-social-core 1.1.3.RELEASE

org.springframework.social spring-social-security 1.1.3.RELEASE

org.springframework.social spring-social-web 1.1.3.RELEASE

org.springframework.social spring-social-facebook 2.0.2.RELEASE

org.springframework.social spring-social-facebook-web 2.0.2.RELEASE

org.springframework.social spring-social-linkedin 1.0.2.RELEASE

org.springframework.social spring-social-twitter 1.1.2.RELEASE

org.springframework.ws spring-ws-core 2.2.3.RELEASE

org.springframework.ws spring-ws-security 2.2.3.RELEASE

org.springframework.ws spring-ws-support 2.2.3.RELEASE

org.springframework.ws spring-ws-test 2.2.3.RELEASE

org.thymeleaf thymeleaf 2.1.4.RELEASE

org.thymeleaf thymeleaf-spring4 2.1.4.RELEASE

org.thymeleaf.extras thymeleaf-extras-conditionalcomments 2.1.1.RELEASE

org.thymeleaf.extras thymeleaf-extras-springsecurity4 2.1.2.RELEASE

org.webjars hal-browser 9f96c74

org.yaml snakeyaml 1.16

redis.clients jedis 2.7.3

wsdl4j wsdl4j 1.6.3

Table D.1 Library dependencies supported by Spring Boot (continued)

Group Artifact Version

Licensed to Thomas Snead <n.ordickan@gmail.com>

Licensed to Thomas Snead <n.ordickan@gmail.com>

243

index

A

ActiveMQ configuration 207
Actuator

connecting to remote shell
invoking Actuator

endpoints 145–146
listing application

beans 143–144
overview 141–142
viewing autoconfig

report 142–143
watching application

metrics 144–145
customizing

changing endpoint IDs 148
creating custom trace

repository 153–155
custom health

indicators 155–156
custom metrics 149–153
enabling and disabling

endpoints 149
endpoints for 125–126
fetching application

information 140–141
monitoring application with

JMX 146–147
overview 6–7
runtime metrics

application metrics
133–136

dumping thread
activity 137–138

monitoring application
health 138–139

tracing web requests
136–137

securing endpoints 156–159
shutting down

application 139–140
viewing configuration details

explaining auto-
configuration 128–129

getting bean wiring
report 126–128

inspecting configuration
properties 129–131

producing endpoint-to-
controller map 131–133

admin features 196
AmqpAdmin bean creation 197
annotations, conditional 45–48
application server deployment

building WAR file 162–164
creating production

profile 164–168
database migration

overview 168
with Flyway 168–170
with Liquibase 170–173

application.properties configu-
ration file 29–30

ApplicationContextMetrics 152
ApplicationHealthIndicator 139
Artemis configuration 207
authentication, Basic 51, 200
auto-configuration

application error pages 71–74
conditional annotations

in 45–48
explaining 128–129

externalizing with properties
configuring application

beans 64–69
configuring data

source 63–64
configuring embedded

server 59–60
configuring logging 60–63
disabling template

caching 58–59
overview 57–58

integration testing for 77–79
leveraging

creating web interface
40–43

defining domain 38–39
defining repository

interface 39–40
running application 43–45

overriding
configuration classes

for 55–56
custom security

configuration 51–55
general discussion 50

overview 37
security for application 50–51
using environment profiles

overview 69–70
properties files for 70
using multi-profile YAML

files 70–71
autoconfig command 142
autoconfig endpoint 125, 128
automatic restart 182
@Autowired annotation 80

Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX244

B

Basic authentication 51, 200
beans command 142–143
beans endpoint 125–126
beans, application,

configuring 64–69
@Before annotation 81
Bitronix Transaction

Manager 224
bootRun task 28
bootstrap class 27–28
--build parameter 21
building applications 30–33

C

cache configuration
properties 208

cf tool 173
changeset command 172
CLI (command-line interface)

applications using
creating executable

JARs 105–106
eliminating code noise with

Groovy 94–98
@Grab annotation 100–101
@GrabMetadata

annotation 101–102
@GrabResolver

annotation 102
overview 93, 98–99
running tests 102–105
setting up project 93–94

initializing projects using
20–22

installation
enabling command-line

completion 11–12
manually 8–9
overview 8
with Groovy Environment

Manager 9–10
with Homebrew 10
with MacPorts 10–11

JPA compatibility with 95
overview 6

closeBrowser() method 89
cloud deployment

Cloud Foundry 173–176, 184
Heroku 177–180

code noise 94–98

command-line completion
11–12

command-line interface. See CLI
compilation, CLI capabilities 3
@ComponentScan

annotation 27
compression 203
Condition interface 45
conditional annotations 45–48
@ConditionalOnMissingBean

annotation 55–56
configprops endpoint 125
configuration

application error pages 71–74
auto-configuration

overview 4–5
conditional annotations

in 45–48
creating web interface 40–43
defining domain 38–39
defining repository

interface 39–40
developer tools 186–187
externalizing with properties

configuring application
beans 64–69

configuring data
source 63–64

configuring embedded
server 59–60

configuring logging 60–63
disabling template

caching 58–59
overview 57–58

overriding auto
configuration classes

for 55–56
custom security

configuration 51–55
general discussion 50

properties reference 195–231
security for application 50–51
Spring history and 2
using environment profiles

overview 69–70
properties files for 70
using multi-profile YAML

files 70–71
viewing using Actuator

explaining auto-
configuration 128–129

getting bean wiring
report 126–128

inspecting configuration
properties 129–131

producing endpoint-to-
controller map 131–133

@ConfigurationProperties
annotation 66–67, 195

configure() method 52–53
constraints variable 119
@ContextConfiguration

annotation 78
contextLoads() method 29
continue-on-error property 166
@Controller annotation 41
controllers, creating using

Grails 119–120
cookies 203–204
CounterService interface 150
CRaSH 141
create-controller command 119
create-domain-class

command 118
cross-site scripting. See XSS
CSRF (Cross-Site Request

Forgery) 114
curl command 139

D

-d parameter 21
data property 165
databases, migrating

overview 168
with Flyway 168–170
with Liquibase 170–173

DataSource, configuration
properties 165–167,
210–215

DataSourceAutoConfiguration
class 46–48

DataSourceHealthIndicator 139
default command 10
dependencies

CLI-based applications
@Grab annotation 100–101
@GrabMetadata

annotation 101–102
@GrabResolver

annotation 102
facet-based 34–35
library dependencies

reference 233–241
overriding transitive 35–37
overview 232
starter 5–6, 33–34

--dependencies parameter 21

Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX 245

deployment
application server

building WAR file 162–164
creating production

profile 164–168
database migration

overview 168
database migration with

Flyway 168–170
database migration with

Liquibase 170–173
cloud

Cloud Foundry 173–176
Heroku 177–180

overview of options 161–162
developer tools

automatic restart 182
configuring globally 186–187
development property

defaults 186
LiveReload 183
remote development 183–186

DiskSpaceHealthIndicator 139
domain, defining in

configuration 38–39
driver-class-name property 166
dump endpoint 125, 137

E

EJBs (Enterprise JavaBeans) 2
Elasticsearch configuration

196, 208–209
@EnableAspectJAutoProxy

annotation 195
@EnableAutoConfiguration

annotation 27
@EnableConfigurationProperties

annotation 67
@EnableWebSecurity

annotation 56
endpoint command 142, 145
endpoints, Actuator

changing IDs 148
enabling and disabling 149
overview 125–126
securing 156–159

Enterprise JavaBeans. See EJBs
env endpoint 125, 129–130
environment profiles

overview 69–70
properties files for 70
using multi-profile YAML

files 70–71
error pages, customizing 71–74
exclude property 182

excluding classes 196
--extract parameter 21

F

Facebook support 193, 229
facet-based dependencies 34–35
favicon.ico resolution 197
findByUsername() method 112
FirefoxDriver 89
Flyway

configuration properties
197–199

database migration with
168–170

FreeMarker configuration
215–217

G

garbage collection 134
GaugeService interface 150
generate-all command 119
generate-controller

command 119
GORM (Grails object-relational

mapping) 108–112
@Grab annotation 100–101, 232
@GrabMetadata

annotation 101–102
@GrabResolver annotation 102
Gradle

dependencies in 232
excluding transitive

dependencies 36
starter dependencies and 5

Grails
controller using 119–120
creating projects 116–117
defining domain 118–119
GORM 108–112
GSP 113–114
installing Grails 3 115
running application 117–118
views using 120–123

Grails object-relational map-
ping. See GORM

Grape (Grape (Groovy Adapt-
able Packaging Engine) 100

Groovy
configuration properties

217–218
eliminating code noise

with 94–98

Groovy Adaptable Packaging
Engine. See Grape

Groovy Environment Manager.
See GVM

GSP (Groovy Server Pages)
overview 113–114
template example 120–122

GVM (Groovy Environment
Manager), installing CLI
with 9–10

H

HATEOAS support 219
health endpoint 125, 138
health() method 156
Heroku deployment 177–180
Homebrew, installing CLI

with 10
HornetQ configuration 219
HSTS (HTTP Strict Transport

Security) 200
HTTP encoding 196
HTTP headers

configuration 200

I

info endpoint 125, 140
init command 20, 22, 26
initial-size property 166
initialize property 165
initializing projects

building created
application 30–33

overview 12
project files created

application.properties con-
figuration file 29–30

bootstrap and configuration
class 27–28

test class 28–29
using CLI 20–22
using IntelliJ IDEA 17–19
using Spring Tool Suite 15–17
using web interface 13–15,

24–26
install command 9
installation

CLI
enabling command-line

completion 11–12
manually 8–9
overview 8

Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX246

installation (continued)
with Groovy Environment

Manager 9–10
with Homebrew 10
with MacPorts 10–11

Grails 3 115
integration testing auto-

configuration 77–79
IntelliJ IDEA, initializing

projects using 17–19

J

Jackson configuration 219–220
JAR files

building executable 32
creating executable JAR from

CLI 105–106
Java Database Connectivity. See

JDBC
Java Enterprise Edition. See JEE
Java Management Extensions.

See JMX
Java Persistence API. See JPA
JAVA_OPTS environment

variable 186
JDBC (Java Database

Connectivity)
JPA vs. 95

JdbcTemplateConfiguration
class 47

JEE (Java Enterprise Edition) 2
Jersey configuration 220
JmsHealthIndicator 139
JMX (Java Management

Extensions)
configuration properties 196
monitoring application

with 146–147
jmx-enabled property 166
jndi-name property 166
JPA (Java Persistence API) 5, 95

configuration properties 221
enabling repositories 196

JpaRepository interface 39–40
JSON mapper

configuration 196
JTA support 197, 222–224

K

keytool utility 60

L

less command 143
library dependencies

reference 233–241
LinkedIn support 193, 229
Liquibase

configuration properties 199
database migration with

170–173
list command 9
LiveReload 183
Log4j 61
Log4j2 61
Logback 60
logging, configuring 60–63

M

MacPorts, installing CLI
with 10–11

mail configuration 224
MailHealthIndicator 139
mappings endpoint 125, 132
Maven

dependencies in 232
dependency management

using 33
fetching @Grab-declared

dependencies 102
starter dependencies and 5

max-active property 166
max-idle property 166
max-wait property 166
MediaType.APPLICATION

_FORM_URLENCODED 83
metrics

application metrics 133–136
dumping thread activity

137–138
monitoring application

health 138–139
tracing web requests 136–137

metrics command 142, 144
metrics endpoint 125, 133
metrics() method 152
MIME types 203
min-evictable-idle-time-millis

property 166
min-idle property 166
mocking Spring MVC 80–83
MockMvcBuilders class 80
MockMvcRequrestBuilders

class 81

MockMvcResultMatchers
class 81

Mongo repositories,
enabling 196

MongoDB 109, 209
MongoHealthIndicator 139
monitoring applications

146–147
multi-part uploads 195
Mustache configuration 225

N

name property 165

O

OAuth configuration 200–202
openBrowser() method 89
OpenEntityManagerInView-

Interceptor 196

P

-p parameter 21
PaaS (Platform as a

Service) 106, 173
--packaging parameter 21
param() method 83
password property 166
PersistenceExceptionTranslation

PostProcessor 196
Pivotal Web Services. See PWS
Platform as a Service. See PaaS
platform property 166
POJOs (plain old Java

objects) 2, 79
port, starting server on

random 87–88
@Profile annotation 69
profiles, configuration

overview 69–70
properties files for 70
using multi-profile YAML

files 70–71
properties

configuring application
beans 64–69

configuring data source
63–64

configuring embedded
server 59–60

configuring logging 60–63
defaults for development 186

Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX 247

properties (continued)
disabling template

caching 58–59
overview 57–58

PublicMetrics interface 151
PWS (Pivotal Web Services) 173

R

RabbitHealthIndicator 139
RabbitMQ configuration

226–227
--random-route option 174
randomPort attribute 87
Redis configuration 227–228
RedisHealthIndicator 139
RemoteSpringApplication

class 184
@RequestMapping

annotation 41, 132
restage command 176
restarting automatically 182
root path 135
run goal 32
run-app command 117–118
running applications, testing

overview 86–87
starting server on random

port 87–88
testing pages with

Selenium 88–90
runtime metrics

application metrics 133–136
dumping thread activity

137–138
monitoring application

health 138–139
tracing web requests 136–137

@RunWith annotation 78

S

schema property 165
secure shell. See SSH
security

adding using auto-
configuration 50–51

for Actuator endpoints
156–159

overriding configuration
for 51–55

testing for web
applications 83–85

SecurityMockMvcConfigurers
class 84

Selenium 88–90
SendGrid configuration 229
sendKeys() method 90
separator property 166
server.port property 59–60
session cookies 203–204
shutting down application

139–140
SitePreferenceHandler 197
Solr

configuration properties 210
enabling repositories 196

SolrHealthIndicator 139
SpEL (Spring Expression

Language) 46
Spring Boot

Actuator 6–7
application structure using

2–3
auto-configuration 4–5
CLI overview 6
initializing projects

overview 12
using CLI 20–22
using IntelliJ IDEA 17–19
using Spring Tool Suite

15–17
using web interface 13–15

installing CLI
enabling command-line

completion 11–12
manually 8–9
overview 8
with Groovy Environment

Manager 9–10
with Homebrew 10
with MacPorts 10–11

misconceptions about 7
Spring history 2
starter dependencies 5–6

Spring Expression Language. See
SpEL

Spring Initializr
building created

application 30–33
overview 12
project files created

application.properties con-
figuration file 29–30

bootstrap and configuration
class 27–28

test class 28–29
using CLI 20–22

using IntelliJ IDEA 17–19
using Spring Tool Suite 15–17
using web interface 13–15,

24–26
Spring IO platform 101–102
Spring Tool Suite, initializing

projects using 15–17
spring-boot-starter 188
@SpringApplicationConfigura-

tion annotation 29, 78
@SpringBootApplication

annotation 27
SpringBootServletInitializer

78, 163
SpringJUnit4ClassRunner

77–78
springSecurity() method 84
sql-script-encoding property 165
SSH (secure shell) 7
SSL configuration 204–205
standaloneSetup() method 80
starter dependencies

facet-based dependencies
34–35

importance of 33–34
overriding transitive

dependencies 35–37
overview 5–6

starters
spring-boot-starter 188
spring-boot-starter-

actuator 188
spring-boot-starter-amqp 188
spring-boot-starter-aop 189
spring-boot-starter-

artemis 189
spring-boot-starter-batch 189
spring-boot-starter-cache 189
spring-boot-starter-cloud-

connectors 189
spring-boot-starter-data-

elasticsearch 189
spring-boot-starter-data-

gemfire 189
spring-boot-starter-data-

jpa 189
spring-boot-starter-data-

mongodb 189
spring-boot-starter-data-

rest 190
spring-boot-starter-data-

solr 190
spring-boot-starter-

freemarker 190

Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX248

starters (continued)
spring-boot-starter-groovy-

templates 190
spring-boot-starter-

hateoas 190
spring-boot-starter-

honetq 190
spring-boot-starter-

integration 190
spring-boot-starter-jdbc 190
spring-boot-starter-jersey 191
spring-boot-starter-jetty 191
spring-boot-starter-jooq 191
spring-boot-starter-jta-

atomikos 191
spring-boot-starter-jta-

bitronix 191
spring-boot-starter-log4j 191
spring-boot-starter-log4j2 192
spring-boot-starter-

logging 192
spring-boot-starter-mail 192
spring-boot-starter-

mobile 192
spring-boot-starter-

mustache 192
spring-boot-starter-parent 192
spring-boot-starter-redis 192
spring-boot-starter-remote-

shell 192
spring-boot-starter-

security 193
spring-boot-starter-social-

facebook 193
spring-boot-starter-social-

linkedin 193
spring-boot-starter-social-

twitter 193
spring-boot-starter-test 193
spring-boot-starter-

thymeleaf 193
spring-boot-starter-

tomcat 193
spring-boot-starter-

undertow 194
spring-boot-starter-

validation 194
spring-boot-starter-

velocity 194
spring-boot-starter-web 194

spring-boot-starter-
websocket 194

spring-boot-starter-ws 194
symbolic links 8

T

test-on-borrow property 166
test-on-return property 166
test-while-idle property 166
testing

integration testing auto-
configuration 77–79

running applications
overview 86–87
starting server on random

port 87–88
testing pages with

Selenium 88–90
web applications

mocking Spring MVC
80–83

overview 79–80
security testing 83–85

tests
class created by Spring

Initializr 28–29
running for CLI-based

applications 102–105
testService() method 78
Thymeleaf

configuration properties
229–230

template caching for 58
time-between-eviction-runs-

millis property 166
Tomcat configuration 205–206
trace endpoint 125, 136
TraceRepository interface 153
transitive dependencies,

overriding 35–37
trigger-file property 182
Twitter support 193, 229

U

Undertow configuration
206–207

uploads, multi-part 195
url property 166

use command 10
UserDetails interface 55
UserDetailsService

interface 112, 157
username property 166

V

validation-query property 166
VCAP_SERVICES environment

variable 176
Velocity configuration 230–231
views, using Grails 120–123

W

WAR files 162–164
web applications, testing

mocking Spring MVC 80–83
overview 79–80
security testing 83–85

@WebAppConfiguration
annotation 80–81

webAppContextSetup()
method 80

@WebIntegrationTest
annotation 86–87, 89

WebSecurityConfigurerAdapter
class 51–52

Windows, command-line
completion and 12

withDetail() method 156
@WithMockUser

annotation 84–85
@WithUserDetails

annotation 84–85

X

-x parameter 21
XSS (cross-site scripting) 200

Y

YAML files 70–71

Z

ZooKeeper 210

Licensed to Thomas Snead <n.ordickan@gmail.com>

Craig Walls

T
he Spring Framework simplifi es enterprise Java develop-
ment, but it does require lots of tedious confi guration
work. Spring Boot radically streamlines spinning up

a Spring application. You get automatic confi guration and
a model with established conventions for build-time and
runtime dependencies. You also get a handy command-line
interface you can use to write scripts in Groovy. Developers
who use Spring Boot often say that they can’t imagine going
back to hand confi guring their applications.

Spring Boot in Action is a developer-focused guide to writing
applications using Spring Boot. In it, you’ll learn how to
bypass confi guration steps so you can focus on your applica-
tion’s behavior. Spring expert Craig Walls uses interesting and
practical examples to teach you both how to use the default
settings effectively and how to override and customize Spring
Boot for your unique environment. Along the way, you’ll
pick up insights from Craig’s years of Spring development
experience.

What’s Inside
● Develop Spring apps more effi ciently
● Minimal to no confi guration
● Runtime metrics with the Actuator
● Covers Spring Boot 1.3

Written for readers familiar with the Spring Framework.

Craig Walls is a software developer, author of the popular book
Spring in Action, Fourth Edition, and a frequent speaker at
conferences.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/spring-boot-in-action

$44.99 / Can $51.99 [INCLUDING eBOOK]

Spring Boot IN ACTION

JAVA

M A N N I N G

“Easy to digest and
 fun to read.”

—From the Foreword by
Andrew Glover, Netfl ix

“The evolution of Spring
continues, and this guide helps

maximize its potential.”
—Michael A. Angelo

ThreatConnect

“A lucid, real-world treatment
of a valuable toolset. The

practical examples help bring
agility and simplicity to

 application construction.”—Eric Kramer
Research Institute at Nationwide

Children’s Hospital

“Easy-to-follow,
 comprehensive, awesome!”—Furkan Kamaci, Alcatel-Lucent

SEE INSERT

	Spring Boot in Action
	contents
	foreword
	preface
	about this book
	Roadmap
	Code conventions and downloads
	Author Online
	About the cover illustration

	acknowledgments
	Chapter 1: Bootstarting Spring
	1.1 Spring rebooted
	1.1.1 Taking a fresh look at Spring
	1.1.2 Examining Spring Boot essentials
	1.1.3 What Spring Boot isn’t

	1.2 Getting started with Spring Boot
	1.2.1 Installing the Spring Boot CLI
	1.2.2 Initializing a Spring Boot project with Spring Initializr

	1.3 Summary

	Chapter 2: Developing your first Spring Boot application
	2.1 Putting Spring Boot to work
	2.1.1 Examining a newly initialized Spring Boot project
	2.1.2 Dissecting a Spring Boot project build

	2.2 Using starter dependencies
	2.2.1 Specifying facet-based dependencies
	2.2.2 Overriding starter transitive dependencies

	2.3 Using automatic configuration
	2.3.1 Focusing on application functionality
	2.3.2 Running the application
	2.3.3 What just happened?

	2.4 Summary

	Chapter 3: Customizing configuration
	3.1 Overriding Spring Boot auto-configuration
	3.1.1 Securing the application
	3.1.2 Creating a custom security configuration
	3.1.3 Taking another peek under the covers of auto-configuration

	3.2 Externalizing configuration with properties
	3.2.1 Fine-tuning auto-configuration
	3.2.2 Externally configuring application beans
	3.2.3 Configuring with profiles

	3.3 Customizing application error pages
	3.4 Summary

	Chapter 4: Testing with Spring Boot
	4.1 Integration testing auto-configuration
	4.2 Testing web applications
	4.2.1 Mocking Spring MVC
	4.2.2 Testing web security

	4.3 Testing a running application
	4.3.1 Starting the server on a random port
	4.3.2 Testing HTML pages with Selenium

	4.4 Summary

	Chapter 5: Getting Groovy with the Spring Boot CLI
	5.1 Developing a Spring Boot CLI application
	5.1.1 Setting up the CLI project
	5.1.2 Eliminating code noise with Groovy
	5.1.3 What just happened?

	5.2 Grabbing dependencies
	5.2.1 Overriding default dependency versions
	5.2.2 Adding dependency repositories

	5.3 Running tests with the CLI
	5.4 Creating a deployable artifact
	5.5 Summary

	Chapter 6: Applying Grails in Spring Boot
	6.1 Using GORM for data persistence
	6.2 Defining views with Groovy Server Pages
	6.3 Mixing Spring Boot with Grails 3
	6.3.1 Creating a new Grails project
	6.3.2 Defining the domain
	6.3.3 Writing a Grails controller
	6.3.4 Creating the view

	6.4 Summary

	Chapter 7: Taking a peek inside with the Actuator
	7.1 Exploring the Actuator’s endpoints
	7.1.1 Viewing configuration details
	7.1.2 Tapping runtime metrics
	7.1.3 Shutting down the application
	7.1.4 Fetching application information

	7.2 Connecting to the Actuator remote shell
	7.2.1 Viewing the autoconfig report
	7.2.2 Listing application beans
	7.2.3 Watching application metrics
	7.2.4 Invoking Actuator endpoints

	7.3 Monitoring your application with JMX
	7.4 Customizing the Actuator
	7.4.1 Changing endpoint IDs
	7.4.2 Enabling and disabling endpoints
	7.4.3 Adding custom metrics and gauges
	7.4.4 Creating a custom trace repository
	7.4.5 Plugging in custom health indicators

	7.5 Securing Actuator endpoints
	7.6 Summary

	Chapter 8: Deploying Spring Boot applications
	8.1 Weighing deployment options
	8.2 Deploying to an application server
	8.2.1 Building a WAR file
	8.2.2 Creating a production profile
	8.2.3 Enabling database migration

	8.3 Pushing to the cloud
	8.3.1 Deploying to Cloud Foundry
	8.3.2 Deploying to Heroku

	8.4 Summary

	appendix A: Spring Boot Developer Tools
	Automatic restart
	LiveReload
	Remote development
	Development property defaults
	Globally configuring developer tools

	appendix B: Spring Boot starters
	appendix C: Configuration properties
	appendix D: Spring Boot dependencies
	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

