

Learning Spring Boot

Table of Contents

Learning Spring Boot
Credits
Foreword
About the Author
About the Reviewers
www.PacktPub.com

Support files, eBooks, discount offers, and more
Why subscribe?
Free access for Packt account holders

Preface
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support

Downloading the example code
Errata

Piracy
Questions

1. Quick Start with Groovy
Getting started
Installing Spring Boot's CLI
Testing with Spring Boot's CLI
Bundling and deploying a Spring Boot application
Adding support for templates
Modernizing our app with JavaScript

Using Bower instead of WebJars
What about an app that is all frontend with no backend?

Adding production-ready support features
Pinging our app for general health
Gathering metrics

Detailed management with CRaSH
Summary

2. Quick Start with Java
Creating an empty project with start.spring.io

Spring Boot starters
Running a Spring Boot application
Adding Spring Social GitHub
Digging into GitHub issues

Creating a GitHub access token
Delving into Spring Boot's property support
Adding server-side mobile support with Spring Mobile
Creating a mobile frontend with jQuery Mobile
Bundling up the application as a runnable JAR
Deploying to Cloud Foundry
Adding production-ready support
Summary

3. Debugging and Managing Your App
Creating a JMS-based publisher/subscriber app
Using Spring Boot's auto-configuration report

Auto-configuring ActiveMQ
Making a change and debugging the results

Overriding Boot with alternate beans or properties
Writing a custom health check to ping ActiveMQ
Adding customized app data to /info
Creating custom metrics to track the message traffic
Tweaking management ports, address, and paths
Restricting access only to JMX
Connecting to the app via JConsole and jmxterm
Creating custom CRaSH commands
Summary

4. Data Access with Spring Boot
Creating an app using H2's in-memory database
Defining entities and repositories
Loading data using a SQL script
Loading data programmatically
Adding a production profile for a MySQL database

Adding Spring Data REST and using it to manage teammates
Reconfiguring our app to use Spring Data MongoDB
Running our MongoDB-based app
Summary

5. Securing Your App with Spring Boot
Getting started
Defining our domain
Loading the test data
Creating a server-side controller
Crafting our HTML templates
Running our unsecured application
Securing our app
Navigating with basic authentication
Enhancing the security model of our app
Configuring user data to persist
Configuring embedded Tomcat to use SSL
Spring Security's default web-level protections
Navigating our fully secured app
Summary

Index

Learning Spring Boot

Learning Spring Boot
Copyright © 2014 Packt Publishing All rights reserved. No part of this book
may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, without the prior written permission of the publisher, except in
the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the
accuracy of the information presented. However, the information contained in
this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing, and its dealers and distributors will be held
liable for any damages caused or alleged to be caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of
the companies and products mentioned in this book by the appropriate use of
capitals. However, Packt Publishing cannot guarantee the accuracy of this
information.

First published: November 2014

Production reference: 1211114

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78439-302-1

www.packtpub.com

http://www.packtpub.com

Credits
Author

Greg L. Turnquist

Reviewers

Zoltan Altfatter

Roy Clarkson

Theo Pack

Marco Vermeulen

Geoffroy Warin

Ricky Yim

Commissioning Editor

Dipika Gaonkar

Acquisition Editor

Owen Roberts

Content Development Editor

Anila Vincent

Technical Editors

Vivek Arora

Siddhi Rane

Shruti Rawool

Copy Editors

Relin Hedly

Stuti Srivastava

Project Coordinator

Neha Bhatnagar

Proofreaders

Simran Bhogal

Lawrence A. Herman

Indexer

Hemangini Bari

Production Coordinator

Nitesh Thakur

Cover Work

Nitesh Thakur

Foreword
People often ask about the origins of the Spring Boot project. The truth is that
there are many origins, but there was a need for something to be done in this
space, and at the time we started work on it in late 2012 or early 2013, the
world was ready for it. There is one feature request
(https://jira.spring.io/browse/SPR-9888) of the Spring Framework that is often
quoted as a kick-starter and was indeed significant in gathering the impetus
required to start work on Boot. However, the story goes further back and has
quite a few strands that need to be woven together before you can see the
whole picture.

When we were first getting Spring Batch ready for a release in early 2007, we
added a class with a main() method (CommandLineJobRunner) because there
was, and still is, a lot of demand to run batch jobs in their own processes.
When I was working a lot with the banks and financial institutions in London in
the late noughties, the same requirement to run Spring as an application from
the command line came up over and over. The Spring Batch use case was
always there, but more often, this was in the context of standalone message
listeners. Of course, everyone ended up writing their own mini platform in
order to launch Spring from the command line. Another Spring Framework
feature request that refers to this problem can be found at
https://jira.spring.io/browse/SPR-8077. Going back to demos I created with
Mark Fisher at SpringOne in 2009, I had some utilities that could embed
Tomcat as a server in a Spring application, which is somewhat connected to
this work.

So, getting a Spring application off the ground in its own process was one
driver for Spring Boot, and coupled with the ability to optionally embed a
servlet container, it became quite a powerful combination on its own. Another
factor, though—and somewhat independent—is the set of features that were
unlocked by Phil Webb's contribution of the @Conditional annotation to the
Spring Framework in 4.0. The @Conditional annotation is a fairly simple
idea, and it is an obvious generalization of a feature (@Profile) that had been
in Spring since Version 3.1; however, the power that it unlocks is amazing and

https://jira.spring.io/browse/SPR-9888
https://jira.spring.io/browse/SPR-8077

is truly instrumental in the success of Spring Boot as it stands today.

The basic @Conditional machinery is in the Spring Framework (and might
well be enhanced in Version 4.2), but the most avid consumer of it and what
unleashed all this power is the Spring Boot auto-configuration module and its
@EnableAutoConfiguration annotation. Without this and its emphasis on
being opinionated, on convention over configuration, and more importantly, on
getting out of the way if the user wants to have their own opinion, Spring Boot
would not be what it is today.

A third major input of the Spring Boot project in its early phases was what we
might now (and in the early phases) call the DevOps movement; this reflects
the many requirements of real people running real applications in production
going back further than Spring Boot and even Spring itself. There are many
good reasons why sharing responsibilities between developers and operators
makes sense, and we can't cover them here, but the important thing is that many
(probably all) of the Spring Engineering team members have real-life
experience running Spring applications in production at various places and
various stages in their careers. At the time we started work on Spring Boot,
this was particularly useful for me as I had just come out of the Cloud Foundry
team where I was part of a group that built and ran the identity management
part of the platform known as the UAA server
(https://github.com/cloudfoundry/uaa), which was all written using Spring.
This wasn't my only experience running Spring applications, but it was the
immediate one, and we used metrics and management endpoints to get
visibility in the running process. This is vital for operators, whether or not they
are developers, and furthermore, many of the requirements are ubiquitous and
can be provided once rather than having to be reinvented everywhere; these
are the features that made up Spring Boot Actuator.

There is more to Spring Boot than just main methods, embedded containers,
auto-configuration, and management endpoints. (The pure joy of getting started
with a fully featured Spring application in a few lines of code cannot be
understated, for instance.) Instead of trying to list them all here, I invite you to
take a dip into this book, break out an editor or an IDE, and crank up some
applications for yourself. Greg Turnquist has done a fantastic job of

https://github.com/cloudfoundry/uaa

introducing the basic tenets of Spring Boot with loads of code to look at and
copy from. One of the most refreshing and exciting aspects of working with
Spring Boot has been the enthusiasm with which it has been received and
embraced by the Spring Engineering team, by the wider community, and the
number of people who have found the time to contribute to the project (we had
around 90 committers as of the 1.1.6 release in late summer 2014). Greg has
been an important member of the Spring Boot team despite having a day job
doing other things in Spring Engineering, and we are grateful for that as well as
the effort he has obviously lavished on this excellent book. Reading and
enjoying coding with Spring has never been so much fun!

Dave Syer

Senior Engineering Consultant and Co-lead for Spring Boot

About the Author
Greg L. Turnquist has developed software professionally since 1997. From
2002 to 2010, he was part of the senior software team that worked on Harris'
$3.5 billion FAA telco program, architecting mission-critical enterprise apps
while managing a software team. He provided after-hours support to a nation-
wide telco system and is no stranger to midnight failures and software triages.
In 2010, he joined the SpringSource division of VMware, which was spun off
into Pivotal in 2013.

As a test-bitten script junky, Java geek, and JavaScript Padawan, he is a
member of the Spring Data team as well as the mobile-oriented Allspark team.
He has made key contributions to Spring Boot and Spring Data REST while
also serving as Getting Started Guides, editor-at-large for http://spring.io/. He
has migrated Spring Data release train's entire reference docs to Asciidoctor in
a week. He has also contributed to multiple Spring portfolio projects.

He has worked with Java, Spring, Spring Security, AspectJ, and Jython
technologies and has also developed sophisticated scripts for *nix and
Windows platforms. As a wiki evangelist, he has also deployed a LAMP-
based wiki website that provides fingertip knowledge to users.

In 2006, Greg created the Spring Python project. The Spring Framework
provided many useful features, and he wanted these features to be available
when he was working with Python. He has written Python Testing Cookbook
and Spring Python 1.1 for Packt Publishing.

He has completed a Master's degree in Computer Engineering at Auburn
University and lives in the United States with his family.

http://spring.io/

About the Reviewers
Zoltan Altfatter (@altfatterz) is a true craftsman who specializes in custom
development using Java and related open source frameworks. He is a certified
Spring Professional who loves and knows how to build scalable software
products. He values simplicity; however, he is not afraid to debug complex
problems. He learns fast and enjoys sharing his knowledge at tech meetups or
through his blogs (http://altfatterz.blogspot.nl). He has experience in several
sectors, including finance and telecom, and has worked at big consultancy
firms, middle-size companies, and small startups. He is passionate about JVM,
REST, reactive systems, and PaaS solutions.

Roy Clarkson is a Java geek, Spring expert, project lead for Spring for
Android and Spring Mobile. He graduated from Georgia Tech. He joined
VMware in 2010, and then was spun off into Pivotal's startup in 2013. He
loves to run and to drink coffee. He lives in the United States with his family.

Theo Pack is a software engineer who has several years of experience in
developing frontend and backend applications. He has completed his MSc and
has been working at Cologne Intelligence GmbH, which is a consulting
company in Germany, since 2009.

He is passionate about technology and likes to master new programming
languages. You can visit his blog at http://furikuri.github.io or follow him on
Twitter at @furikuri.

Marco Vermeulen is a South African software developer who lives and
works in London. He is passionate about writing well-crafted code that is
driven and guided by tests.

As a proponent of BDD, he has successfully applied this technique in
enterprise as well as on open source projects. In his spare time, he contributes
to OSS. He is the creator of the GVM (Groovy enVironment Manager).

He also regularly speaks at conferences, and has spoken at Spring One 2GX,
Gr8Conf EU, Gr8Conf US, Grails eXchange, and Greach in past years.

http://altfatterz.blogspot.nl
http://furikuri.github.io

Geoffroy Warin has been programming since he was 10. He is a firm believer
in the software craftsmanship movement and open source initiatives. He is a
developer by choice and conviction, and has been working on the conception
of enterprise-level web applications in Java and JavaScript throughout his
career.

He teaches courses on Java web stacks and is a Groovy and Spring enthusiast.

You can find more about him on his blog at http://geowarin.github.io and on
Twitter at https://twitter.com/geowarin.

Ricky Yim is a passionate software engineer who has over 15 years of
industry experience. He is a firm believer in using test-driven and behavior-
driven development and agile practices to solve problems. He takes a flexible
approach to software delivery and applies innovative solutions. He is
currently a Principal Consultant and also the Delivery Manager for DiUS
Computing, Sydney, Australia.

You can find out more about him here at http://codingricky.com and on Twitter
at https://twitter.com/codingricky.

http://geowarin.github.io
https://twitter.com/geowarin
http://codingricky.com
https://twitter.com/codingricky

www.PacktPub.com
Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit
www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with
PDF and ePub files available? You can upgrade to the eBook version at
www.PacktPub.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at
<service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters and receive exclusive discounts
and offers on Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can search, access, and read Packt's entire
library of books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to
access PacktLib today and view 9 entirely free books. Simply use your login
credentials for immediate access.

http://www.PacktPub.com

Preface
"Very impressed with @springboot so far, 10 mins to get a REST service up and running, now to add
MongoDB. No black magic under the covers!"

--Graham Rivers-Brown, https://twitter.com/grahamrb/status/500422704499945472

Back in 2012, a couple of Spring developers stepped back from the current
state of Java development and asked some questions, "Developers with Spring
MVC on the classpath probably want to use it. How can we make this easier?"
"How can we make Spring more accessible to new developers?" "Why does a
computer student have to learn about build systems, web.xml files, and all the
other steps to simply display "Hello, World" on a web page?"

By approaching the topic of simplifying development without sacrificing the
power of Spring, they coded several powerful features. At the SpringOne
conference in 2013, they unveiled Spring Boot with its ability to auto-
configure Spring Beans, configure things with simple property management,
and run apps inside an embedded Tomcat container bundled inside a runnable
JAR file. They also showed Spring Boot's opinionated approach to pick which
Spring beans were configured based on classpath settings among other factors.

The response was incredible. The session by Phil Webb and Dave Syer
witnessed record attendance along with lots of follow-up questions. (I know
because I was there.) People were discussing it in the hallways between talks.
The ensuing stream of blog articles after the conference from the Spring
community was relentless. Proof of its success and staying power was further
evidenced at the 2014 SpringOne conference a year later. Spring Boot had
woven itself into almost every Java-based demo as a new lingua franca among
Spring developers.

The keynote presented by Andy Glover, a NetFlix engineer who had once
developed Java but left to write Ruby on Rails, explained the reasons why he
returned to Java. Spring Boot made Java fun again! Furthermore, when a
contingent of over 20 Spring developers from the conference visited the Java
Metroplex Users Group in Dallas the same week, there was a lot of

https://twitter.com/grahamrb/status/500422704499945472

excitement. Lots of questions were fired off to the Spring team with many about
Spring Boot, including "When will there be a book about Spring Boot?"

I hope you enjoy this experience.

What this book covers
Chapter 1, Quick Start with Groovy, explains how to rapidly craft a Spring
MVC app that runs inside an embedded Tomcat container using just a few lines
of Groovy and no build file. You will also learn how to plug in jQuery, web
templates, and production-grade metrics and health checks.

Chapter 2, Quick Start with Java, explains how to rapidly create a Spring
MVC app with Java that connects to GitHub and scans for open issues using
Spring Social GitHub. Then create a mobile frontend and deploy it to the
cloud.

Chapter 3, Debugging and Managing Your App, explains how to create a
JMS-based publisher/subscriber app with embedded ActiveMQ that simulates
ops center monitoring. You will learn how Spring Boot auto-configures things
as well as how to override its opinion with your own. Also, you can add
customized health checks and custom metrics, and reconfigure Spring Boot's
default management settings.

Chapter 4, Data Access with Spring Boot, explains how to spin up a sports
team app backed by a relational database using Spring Data JPA. You will see
how to use Spring Boot's support of Spring profiles to have an in-memory
database for development while switching to a persistent one for production.
You will also discover how Spring Boot auto-configures database support.
You will learn how to export the database layer with Spring Data REST as a
hypermedia-based RESTful interface based on several REST standards.
Finally, you will get a taste of switching to Spring Data MongoDB.

Chapter 5, Securing Your App with Spring Boot, explains how to create a fully
functional sports-team roster app with Spring MVC and then secure it with
Spring Security. You will also learn how to control security through both URL
and method-level rules. Next, you will discover how to configure Spring
Boot's embedded Tomcat servlet container to also serve things via SSL. This
chapter also explains how to fine-tune your security policies to force traffic
over encrypted channels to protect user data by default.

What you need for this book
Spring Boot supports Java 6 and higher, but all code examples in this book are
based on Java 8.

Spring Boot doesn't require a build system, but this book uses Gradle. Gradle
comes with a wrapper
(http://www.gradle.org/docs/current/userguide/gradle_wrapper.html), meaning
you don't need a particular version. It is recommended that you install the latest
version of Gradle available to configure wrappers. More details on using the
wrapper are offered later in this book.

Some parts of this book use Bower to install JavaScript modules. To use it,
please visit http://bower.io.

Parts of this book use ActiveMQ (http://activemq.apache.org), MySQL
(http://www.mysql.com), and MongoDB (http://www.mongodb.org).

Spring Boot has Groovy support (refer to Chapter 1, Quick Start with
Groovy), but comes with an embedded Groovy compiler, so you don't have to
install Groovy on your system.

If you use Mac, you might want to investigate Homebrew (http://brew.sh) as an
alternative package manager for certain utilities used in this book.

http://www.gradle.org/docs/current/userguide/gradle_wrapper.html
http://bower.io
http://activemq.apache.org
http://www.mysql.com
http://www.mongodb.org
http://brew.sh

Who this book is for
This book is aimed to help developers who are new to Spring Boot get up and
running quickly in the arena of Spring app development. It is also for
experienced Spring developers, as it shows how to remove low-level
boilerplate and instead focus on building functional apps while learning how
to override Boot's opinion.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles are
shown as follows: "A Spring MVC app is marked by the @Controller
annotation."

A block of code is set as follows:

@RestController
class App {
 @RequestMapping("/")
 def home() {
 "Hello, world!"
 }
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

@RestController
class App {
 @RequestMapping("/")
 def home() {
 "Hello, world!"
 }
}

Any command-line input or output is written as follows:

$ spring run app.groovy

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes, for example, appear in the text like this:
"Click on Generate new token."

Note

Warnings or important notes appear in a box like this.

Tip

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think
about this book—what you liked or may have disliked. Reader feedback is
important for us to develop titles that you really get the most out of. To send us
general feedback, simply send an e-mail to <feedback@packtpub.com>, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide on
http://www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you.

You can also download the example code files for this book from GitHub at
https://github.com/gregturn/learning-spring-boot-code.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you find a mistake in one of our books—maybe a
mistake in the text or the code—we would be grateful if you would report this
to us. By doing so, you can save other readers from frustration and help us
improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of existing errata,
under the Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the
book in the search field. The required information will appear under the Errata
section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very
seriously. If you come across any illegal copies of our works, in any form, on
the Internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

mailto:copyright@packtpub.com

Questions
You can contact us at <questions@packtpub.com> if you are having a
problem with any aspect of the book, and we will do our best to address it.

mailto:questions@packtpub.com

Chapter 1. Quick Start with Groovy
"Working with Spring Boot is like pair-programming with the Spring developers."

--Josh Long @starbuxman

This chapter introduces Spring Boot using the deft programming language of
Groovy. If you're not interested in Groovy, you can enjoy a similar high-speed
experience with pure Java in the next chapter.

In this chapter, we will cover the following topics:

Creating a full-blown Spring MVC web app with just a few lines of code
Seeing how to install Spring Boot's simple CLI
Learning how to write automated tests with both JUnit and Spock
Bundling up the application as a runnable JAR file
Ramping up our app to use templates and jQuery
Adding production-ready support such as metrics, health, environment,
and other things with a single line of code

Getting started
Spring Boot lets us rapidly create rock solid applications. As an example, look
at the following source code written in Groovy in app.groovy:

@RestController
class App {
 @RequestMapping("/")
 def home() {
 "Hello, world!"
 }
}

Believe it or not, this small chunk of code is a complete, runnable web
application with the details shown as follows:

The @RestController annotation asks Spring MVC to look for web
routes. This annotation also indicates that every HTTP endpoint in this
class will write its results directly into the HTTP response instead of
using a view.
The @RequestMapping annotation maps the home() method to the /
route. (By the way, it doesn't really matter what the method is named.)
In Groovy, the final statement is the return value, so, there's no need to
type return.
Also, we don't have to tag either the class or the method as public, and
we can drop the semicolons, which really trims away the cruft.

Let's launch this app using Spring Boot's spring tool, aka the Command Line
Interface (CLI) tool as shown here, and see what it produces. (I promise we'll
see how to install it later in this chapter.)

$ spring run app.groovy

The output for the preceding command will be as follows:

 . ____ _
\ ___' _(_) _ _ \ \ \ \
(()__ | ' | '_| | ' \/ ' | \ \ \ \
\\/ ___)| |_)| | | | | || (_| |))))

 ' |____| .__|_| |_|_| |___, |
=========|_|==============|___/=/_/_/_/
:: Spring Boot :: (v1.1.6.RELEASE)

2014-06-11 22:50:24.435 ... : Starting application on retina
with PID 55927 (/...
2014-06-11 22:50:24.610 ... : Refreshing
org.springframework.boot.context.embe...
2014-06-11 22:50:25.194 ... : Overriding bean definition for
bean 'beanNameVie...
2014-06-11 22:50:26.027 ... : Server initialized with port:
8080
2014-06-11 22:50:26.249 ... : Starting service Tomcat
2014-06-11 22:50:26.249 ... : Starting Servlet Engine: Apache
Tomcat/7.0.54
2014-06-11 22:50:26.343 ... : Unknown loader
org.springframework.boot.cli.comp...
2014-06-11 22:50:26.349 ... : Initializing Spring embedded
WebApplicationContext
2014-06-11 22:50:26.349 ... : Root WebApplicationContext:
initialization compl...
2014-06-11 22:50:26.825 ... : Mapping servlet:
'dispatcherServlet' to [/]
2014-06-11 22:50:26.827 ... : Mapping filter:
'hiddenHttpMethodFilter' to: [/*]
2014-06-11 22:50:27.332 ... : Mapped URL path
[/**/favicon.ico] onto handler o...
2014-06-11 22:50:27.406 ... : Mapped "{[/],methods=[],params=
[],headers=[],con...
2014-06-11 22:50:27.408 ... : Mapped "{[/error],methods=
[],params=[],headers=[...
2014-06-11 22:50:27.408 ... : Mapped "{[/error],methods=
[],params=[],headers=[...
2014-06-11 22:50:27.416 ... : Adding welcome page:
file:/Users/gturnquist/Drop...
2014-06-11 22:50:27.418 ... : Root mapping to handler of type
[class org.sprin...
2014-06-11 22:50:27.429 ... : Mapped URL path [/**] onto
handler of type [clas...
2014-06-11 22:50:27.429 ... : Mapped URL path [/webjars/**]
onto handler of ty...
2014-06-11 22:50:27.968 ... : Registering beans for JMX
exposure on startup
2014-06-11 22:50:27.993 ... : Tomcat started on port(s):

8080/http
2014-06-11 22:50:27.994 ... : Started application in 3.937
seconds (JVM runnin...

Note

The console output has been edited to better fit this book.

Visit http://localhost:8080 in a browser to see the following output:

So, what all just happened? Let's walk through each phase.

The spring tool parsed app.groovy and spotted the @RestController
annotation. This tipped it off to add Spring MVC to the classpath using
Groovy's @Grab annotation (spring also does this if it spots @Controller or
@EnableWebMvc). It makes our app look like the following code:

//@Grab("spring-boot-starter-web")
//@Grab("groovy-templates")

@RestController
class App {
 @RequestMapping("/")
 def home() {
 "Hello, world!"
 }
}

Tip

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you.

Our preceding code has been manipulated like this:

The @Grab annotation is part of Groovy Grape
(http://groovy.codehaus.org/Grape), a tool that pulls down third-party
libraries from Maven central
The spring-boot-starter-web package is a Spring Boot package that
pulls in all the dependencies needed for a Spring MVC app
The groovy-templates package gives us the option to use Groovy's
built-in template support (which we aren't using in this example, but is
included nonetheless)

Tip

Why are the first lines commented out? It's because these lines aren't really
added to the code we wrote. Spring Boot doesn't use code generation, but
instead makes changes inside its embedded Groovy compiler. The comments
are simply to clarify what we wrote versus what Spring Boot effectively
configured for us.

For those already familiar with Groovy Grape, it's true that @Grab actually
requires a group ID, an artifact ID, and a version. However, spring has a
shortcut; if we use a library supported by Spring Boot, we only need to specify
the artifact ID. The rest of the library's coordinates are supplied by spring
and are based on the version of Spring Boot's CLI we have installed. See
https://github.com/spring-projects/spring-boot/blob/v1.1.6.RELEASE/spring-
boot-dependencies/pom.xml for a detailed listing of supported libraries.

After adding these extra libraries, spring inserted a few extra import
statements, as shown in the following code:

//@Grab("spring-boot-starter-web")

http://www.packtpub.com
http://www.packtpub.com/support
http://groovy.codehaus.org/Grape
https://github.com/spring-projects/spring-boot/blob/v1.1.6.RELEASE/spring-boot-dependencies/pom.xml

//@Grab("groovy-templates")

//import org.springframework.web.bind.annotation.*
//import org.springframework.web.servlet.config.annotation.*
//import org.springframework.web.servlet.*
//import org.springframework.web.servlet.handler.*
//import org.springframework.http.*
//import org.springframework.ui.*

//static import
org.springframework.boot.cli.template.GroovyTemplate.template

@RestController
class App {
 @RequestMapping("/")
 def home() {
 "Hello, world!"
 }
}

These particular import statements are for Spring MVC. By automatically
supplying these critical import statements, we don't need to know where
@RestController or @RequestMapping are located. We don't need a
particular IDE to solve it for us either. Instead, we can focus on the app and not
worry about such low-level intimate details of Spring MVC.

Finally, spring adds Spring Boot's @EnableAutoConfiguration annotation
to the class and creates a static void main method to run our app, as shown
in the following code:

//@Grab("spring-boot-starter-web")
//@Grab("groovy-templates")

//import org.springframework.web.bind.annotation.*
//import org.springframework.web.servlet.config.annotation.*
//import org.springframework.web.servlet.*
//import org.springframework.web.servlet.handler.*
//import org.springframework.http.*
//import org.springframework.ui.*

//static import
org.springframework.boot.cli.template.GroovyTemplate.template

//@EnableAutoConfiguration
@RestController
class App {
 @RequestMapping("")
 def home() {
 "Hello, world!"
 }

 /static void main(String[] args) {
 // SpringApplication.run(App.class, args)
 //}
}

Let's break down this App class:

The @EnableAutoConfiguration annotation signals Spring Boot to start
making opinionated decisions on adding various components to our app.
For example, since Spring MVC was pulled in, many critical beans are
created that include view resolvers, an embedded Tomcat servlet
container, and a dispatcher servlet. These and other components are
created automatically and added to the application context, powering up
our app.
The SpringApplication.run() method is Spring Boot's API to start up
our app and create an application context. Wrapping it in static void
main means that we can run this app anywhere there is a JVM installed.

Tip

We can also run spring run -d app.groovy to get Spring Boot's auto-
configuration report, unveiling the decisions Spring Boot made. For more
details about this report, see Chapter 3, Debugging and Managing Your App.

In the console output displayed earlier, we not only see the embedded Apache
Tomcat servlet container, but also details about Spring MVC being configured.
Let's zero in on one line of that console output. The following line shows one
Spring MVC route being configured:

2014-06-11 22:50:27.406 ... : Mapped "{[/],methods=[],params=
[],headers=[],con...

We can see our route to /. Even though it's not visible in this book, running the

code will show definite linkage to our home() method.

Let's pick another line from that console output to checkout Tomcat's settings.
The embedded Tomcat container is configured to run on port 8080, shown as
follows (we'll learn how to easily change this later on in the book):

2014-06-11 22:50:27.993 ... : Tomcat started on port(s):
8080/http

Have you built Spring MVC apps before? Perhaps you recognize some of these
components. It doesn't really matter if you're not familiar with Spring MVC.
Spring Boot fired up enough infrastructure to host our web app and allowed us
to concentrate our coding efforts on functional features. In this case, the app
simply prints a Hello greeting on the web page.

Throughout this book, we'll explore how Spring Boot configures components
automatically while keeping us in the driver's seat of app development. Also,
we'll discover how to override Boot's opinion when needed.

Installing Spring Boot's CLI
One handy way to install things is with the Groovy enVironment Manager
(GVM) which is found at http://gvmtool.net. It's cross platform and lets you
manage multiple versions of various tools from the Groovy community,
including Spring Boot's CLI. Installing gvm is super easy with the following
command:

$ curl -s get.gvmtool.net | bash

If you are on Windows, of course, you'll have to visit the website for more
directions. Assuming we have gvm installed, this is all it takes to install the
Spring Boot CLI:

$ gvm install springboot
$ spring --version
Spring CLI v1.1.6.RELEASE
$ gvm ls springboot

==
===========
Available Springboot Versions
==
===========
> * 1.1.6.RELEASE
...
==
===========
+ - local version
* - installed
> - currently in use
==
===========

With GVM, you can readily switch to other versions by typing gvm use
springboot <other version>.

There is an alternative if you are using a Mac. One of the most popular
package managers for OS X is Homebrew (http://brew.sh). Assuming you have

http://gvmtool.net
http://brew.sh

already set up brew, you can install the spring tool by typing:

$ brew tap pivotal/tap
$ brew install springboot
$ spring --version
Spring CLI v1.1.6.RELEASE

Tip

pivotal/tap (https://github.com/pivotal/homebrew-tap) is a Homebrew
extension point with many modules from Pivotal, including Spring Boot's CLI
tool.

You can also download the bits directly using the following URLs, although
one of the preceding solutions is recommended:

http://repo.spring.io/release/org/springframework/boot/springboot-
cli/1.1.6.RELEASE/springboot-cli-1.1.6.RELEASE-bin.zip
http://repo.spring.io/release/org/springframework/boot/springboot-
cli/1.1.6.RELEASE/springboot-cli-1.1.6.RELEASE-bin.tar.gz

Let's check out Spring Boot's CLI commands! To get a listing of what
commands are available, use the following argument:

$ spring --help

We get a listing that includes these commands and common options:

Command Description

run [options] <files> [--]
[args]

This runs a Spring Groovy script

test [options] <files> [--]
[args]

This runs a Spring Groovy script test

grab
This downloads a Spring Groovy script's dependencies to
./repository

jar [options] <jar-name>
<files>

This creates a self-contained executable JAR file from a Spring

https://github.com/pivotal/homebrew-tap
http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/1.1.6.RELEASE/spring-boot-cli-1.1.6.RELEASE-bin.zip
http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/1.1.6.RELEASE/spring-boot-cli-1.1.6.RELEASE-bin.tar.gz

Groovy script

shell This starts a nested shell

-d, --debug Verbose mode This prints additional status information for the command you are
running

The most commonly used commands are run, test, and jar. We already used
run at the beginning of this chapter. In the next section, we'll explore how to
write some tests and run them with the test command. Further on in this
chapter, we'll see how to bundle up our code into a runnable JAR file with the
jar command.

Testing with Spring Boot's CLI
So far, we've seen a tiny app power up using the popular Spring and Apache
Tomcat web stack with little effort from our end. Spring Boot was able to
detect that we wanted a Spring MVC app, and it put together the components
we needed. However, in this day and age, no application is complete without
coding some tests. Let's dig in a little more and see how to write some
automated tests.

The spring test command kicks off Spring Boot; however, instead of
magically adding a static void main method to run our app, it auto-
configures test runners based on the code we supply. Let's first look at this
example of a domain class and its related test case found inside Spring Boot's
collection of test cases:

class Book {
 String author
 String title
}

class BookTests {
 @Test
 void testBooks() {
 Book book = new Book(author: "Tom Clancy",
 title: "Threat Vector")
 assertEquals("Tom Clancy", book.author)
 }
}

The Book class is a simple domain object with two fields. The BookTests
class is a class with a single test method flagged by JUnit's @Test annotation.

Tip

This chunk of code is part of Spring Boot's official collection of automated
tests at https://github.com/spring-projects/spring-boot/blob/master/spring-
boot-cli/test-samples/book_and_tests.groovy. In fact, there is a huge collection
of samples for various features offered by Spring Boot CLI in the test-
samples folder.

https://github.com/spring-projects/spring-boot/blob/master/spring-boot-cli/test-samples/book_and_tests.groovy

To run the tests, copy the preceding code into book_and_tests.groovy and
invoke the test command:

$ spring test book_and_tests.groovy
Time: 0.264

OK (1 test)

Our test case passed! However, no test checkout is complete without a test
failure. Let's force it to fail by replacing assertEquals("Tom Clancy",
book.author) with assertEquals("Tom Clancy", book.title):

$ spring test book_and_tests.groovy
.E
Time: 0.262
There was 1 failure:
1) testBooks(BookTests)
org.junit.ComparisonFailure: expected:<T[om Clancy]> but was:
<T[hreat Vector]>
 at org.junit.Assert.assertEquals(Assert.java:115)
 at org.junit.Assert.assertEquals(Assert.java:144)
 at org.junit.Assert$assertEquals.callStatic(Unknown
Source)
 ...
 at BookTests.testBooks(book_and_tests.groovy:10)
...
FAILURES!!!
Tests run: 1, Failures: 1

It failed on a string match as expected. Looking down the call stack, we can
see exactly where it failed: book_and_tests.groovy:10. We changed the
actual to book.title while keeping the expected at Tom Clancy.

JUnit isn't the only test framework spring supports. Spock
(https://code.google.com/p/spock) is a very popular testing framework in the
Groovy community. The spring test command supports it as well. An
example of the Spoke framework is as follows:

class HelloSpock extends Specification {
 def "length of Spock's and his friends' names"() {
 expect:

https://code.google.com/p/spock

 name.size() == length

 where:
 name | length
 "Spock" | 5
 "Kirk" | 4
 "Scotty" | 6
 }
}

Tip

This code sample is also part of Boot's set of tests at https://github.com/spring-
projects/spring-boot/blob/master/spring-boot-cli/test-samples/spock.groovy.

This test takes advantage of Groovy's ability to create a method name. By
wrapping the string with double quotes, "length of Spock's and his
friends' names"() becomes a legal method name. This pays off during test
failures by providing a comprehensible error message that is also directly tied
to the code, as we'll see later.

This test example shows a test closure at the top (expect: name.size() ==
length) followed by a table of inputs. Spock will iterate over each entry in
the table and run it through the expect clause as a separate test. This is
convenient when we need to run a series of data inputs and their expected
outputs through a single test scenario and want to avoid writing multiple
method calls.

The spring tool spots this code as a test because HelloSpock extends Spock's
Specification interface:

$ spring test spock.groovy
.
Time: 0.22

OK (1 test)

Again, if we muck up our test case by replacing 4 with 40 and 6 with 16, we
can see why it failed and where:

https://github.com/spring-projects/spring-boot/blob/master/spring-boot-cli/test-samples/spock.groovy

$ spring test spock.groovy
.EE
Time: 0.294
There were 2 failures:
1) length of Spock's and his friends' names(HelloSpock)
Condition not satisfied:

name.size() == length
| | | |
Kirk 4 | 40
 false

 at HelloSpock.length of Spock's and his friends'
names(spock.groovy:4)
2) length of Spock's and his friends' names(HelloSpock)
Condition not satisfied:

name.size() == length
| | | |
| 6 | 16
Scotty false

 at HelloSpock.length of Spock's and his friends'
names(spock.groovy:4)

FAILURES!!!
Tests run: 1, Failures: 2

This easy-to-read assertion output is thanks to Groovy's power assertions
(http://groovy-lang.org/docs/groovy-2.3.0/html/documentation/core-testing-
guide.html#_power_assertions) and not restricted to Spock.

Tip

A common issue with running more than one set of inputs and outputs through a
single scenario is if the testing framework halts after the first error. With
Spock, it clearly runs all inputs and shows us multiple failures, allowing us to
fix bugs faster.

It's also easy to run both at the same time. Spring Boot can mix and match
testing styles with ease:

http://groovy-lang.org/docs/groovy-2.3.0/html/documentation/core-testing-guide.html#_power_assertions

$ spring test *.groovy
..
Time: 0.288

OK (2 tests)

In both our JUnit and Spock test cases, we didn't have to add any @Grab
statements to pull in the libraries nor did we need any import statements. The
spring test command automatically adds them in for us so we can work on
writing the tests.

Tip

Which test suite is better, JUnit or Spock? Personally, I have more experience
with JUnit, but Spock provides powerful assertion operations, the ability to
give readable test names, and a strong way to iterate over multiple sets of data.
If I were using Groovy for everyday application development, I would
probably migrate towards Spock.

While reducing the need for @Grab and import statements reduces the amount
of code we need to manage, some IDEs might not be up to date with Spring
Boot CLI support, and hence report errors.

Bundling and deploying a Spring
Boot application
So far, we have created a web app that fits in a tweet! This is reminiscent of
Rob Winch's popular tweet:

Tip

Since the time of Rob's famous tweet, the Spring Framework has come out with
@RestController, an annotation that is basically @Controller plus
@ResponseBody. Using this, the code in this tweet can be reduced down to

@RestController class ThisWillActuallyRun {

@RequestMapping("/") String home() { "Hello world!" } }.

Next, we wrote some super simple automated tests. A big step for any
application is deploying it to production. The spring tool gives us the means
with its jar command:

$ spring jar app.jar app.groovy

This isn't just any JAR file. It's an executable JAR file with all the required
dependencies embedded inside it.

I invite you to look inside the JAR file by typing jar tvf app.jar. It's not
printed here for space reasons, but it contains several key parts:

Compiled App.class based on app.groovy is included
All required libraries are found in the lib/ folder
Spring Boot adds a little extra code designed to load and run the nested
JAR files

Tip

Java doesn't provide any standardized way to load nested JAR files. Many
people have tried to fill this gap by creating "shaded" JARs by unpacking all
the class files and repacking them directly into the enclosing JAR file. This
makes it hard to spot the libraries, removes their encapsulation, and even has
the potential to violate certain project's licensing agreements. Boot instead
provides the means to bundle up third-party JARs inside an enclosing JAR file
and properly load them at runtime. Read more at http://docs.spring.io/spring-
boot/docs/1.1.6.RELEASE/reference/htmlsingle/#executable-jar.

With our handy-dandy runnable JAR assembled, there's nothing left to do but
run it:

$ java -jar app.jar

 . ____ _
\ ___' _(_) _ _ \ \ \ \
(()__ | ' | '_| | ' \/ ' | \ \ \ \
\\/ ___)| |_)| | | | | || (_| |))))

http://docs.spring.io/spring-boot/docs/1.1.6.RELEASE/reference/htmlsingle/#executable-jar

 ' |____| .__|_| |_|_| |___, |
=========|_|==============|___/=/_/_/_/
:: Spring Boot :: (v1.1.6.RELEASE)

2014-06-11 22:55:54.807 ... : Starting
PackagedSpringApplicationLauncher on re...
2014-06-11 22:55:55.033 ... : Refreshing
org.springframework.boot.context.embe...
2014-06-11 22:55:55.621 ... : Overriding bean definition for
bean 'beanNameVie...
2014-06-11 22:55:56.578 ... : Server initialized with port:
8080
...

What are the implications? We can easily take our runnable JAR file and
deploy it anywhere there is a JVM:

If our production environment is on a separate, private network, we can
put the JAR file on a flash drive and walk it out to the server room
If we have SSH access, we can upload it from our development
workstation
If we are using some PaaS provider such as Cloud Foundry (public,
private, or hybrid), we can push it by typing cf push <my app name> -
p app.jar

We can stage it on our extranet FTP site for customers or other team
members to grab a copy
And…just about any other option imaginable

Even though Oracle officially ended all public updates to Java 6 in February
2013, Spring Boot still supports it. Spring Boot leverages many parts of Spring
Framework 4.0 (especially the @Conditional annotation), which requires a
minimum of Java 6. Java 6 has shown a relatively healthy adoption, so the
odds of finding a machine unable to run any apps built with Boot are
minuscule. Don't worry if you are using Java 7 or 8; Spring Framework 4 is
ready to make full use of this as well!

Spring Boot uses embeddable Tomcat, so there isn't a hard requirement for any
type of container to be installed on the target machine. Non-web apps (we'll
explore this later in the book) don't even require Apache Tomcat. The JAR file

itself is the new container that allows us to stop thinking in terms of old
fashioned servlet containers. Instead, we can think in terms of apps. All these
factors add up to maximum flexibility in application deployment.

Adding support for templates
Okay, we've created a super simple application using Groovy and Spring Boot.
We also bundled it up as a runnable JAR file that can be deployed anywhere
we can find a Java 6 (or higher) JVM. However, this toy app we've built so far
was hard coded with Hello, world! content. Real apps need views that can
handle dynamic data, right? Let's make some tweaks and call it
app_with_views.groovy, as shown in the following code:

@Grab("thymeleaf-spring4")
@Controller
class ViewBasedApp {

 def chapters = ["Quick Start With Groovy",
 "Quick Start With Java",
 "Debugging and Managing Your App",
 "Data Access with Spring Boot",
 "Securing Your App"]

 @RequestMapping("/")
 def home(@RequestParam(value="name", defaultValue="World")
String n) {
 new ModelAndView("home")
 .addObject("name", n)
 .addObject("chapters", chapters)
 }
}

What did we just do? We can see the following listed here:

The @Grab("thymeleaf-spring4") annotation pulls in the Thymeleaf
template engine, which causes Boot to auto-configure some more
infrastructure. Boot supports several template engines, but we'll be using
Thymeleaf throughout this book.
Replacing @RestController with @Controller indicates that the return
value of route methods is a view and not raw content.
The @RequestParam annotation lets us grab the incoming name parameter
and put it in the view's ModelAndView instance.
The ModelAndView class is a nice container that lets us specify the view
name and provide data objects to whatever template engine we choose

(Thymeleaf in this case).
We are also using a fixed list of chapter titles from this book as additional
data for the page to render. This simulates content being fetched from a
database.

Tip

While this book uses Thymeleaf, Spring MVC doesn't require a particular
template engine in order to use its model and view classes.

We need to craft our home template. Spring Boot auto-configures settings for
multiple engines. When it comes to Thymeleaf, it prefixes all view names with
templates/ and appends .html at the end. (See http://docs.spring.io/spring-
boot/docs/1.1.6.RELEASE/reference/htmlsingle/#boot-features-spring-mvc-
template-engines for more information.) To do so, we first need to create the
templates directory adjacent to our code. Otherwise, Spring Boot CLI won't
be able to find our template. Next, let's create templates/home.html, as
shown in the following code:

<html>
 <head>
 <title>Learning Spring Boot - Chapter 1</title>
 </head>
 <body>
 <p th:text="'Hello, ' + ${name}"></p>

 <li th:each="chapter : ${chapters}"
th:text="${chapter}">

 </body>
</html>

Let's break down this template:

Thymeleaf is HTML compliant, meaning the templates are visible inside a
browser without breaking anything (compared to things like JSPs in
certain situations). Its engine plugs in via the th namespace, using that as
the way to introduce expressions, access model objects, and so on.
The th:text="'Hello, ' + ${name}" attribute embedded inside the
<p> element configures the text value of this element. In this case, it

http://docs.spring.io/spring-boot/docs/1.1.6.RELEASE/reference/htmlsingle/#boot-features-spring-mvc-template-engines

concatenates Hello with the name attribute that was supplied by the
server.
This template also shows a numbered list of chapter titles from this book,
using Thymeleaf's th:each iterator. Thymeleaf creates one tag for
each chapter supplied in ModelAndView and proceeds to set the text
value of each line item with that particular row's chapter name.

Let's launch this template-based version of our app:

$ spring run app_with_views.groovy

If we navigate to the same http://localhost:8080 as before, we'll see the
familiar Hello, world!, now accompanied by the listing of chapters. However,
if we go to http://localhost:8080?name=Alice, we'll instead see Hello,
Alice, as shown in the following screenshot:

Tip

Thymeleaf has a DOM-based parsing engine. Everything is handled by
attributes in the th namespace. This means we can open up a Thymeleaf
template with any browser with no problem because it's 100 percent valid
HTML. Even though it's the chosen view technology for this book, diving into
all of its intricacies would take up too much room. For more details, see
http://www.thymeleaf.org.

http://www.thymeleaf.org

Modernizing our app with
JavaScript
We just saw that, with a single @Grab statement, Spring Boot automatically
configured the Thymeleaf template engine and some specialized view
resolvers. We took advantage of Spring MVC's ability to pass attributes to the
template through ModelAndView. Instead of figuring out the details of view
resolvers, we instead channeled our efforts into building a handy template to
render data fetched from the server. We didn't have to dig through reference
docs, Google, and Stack Overflow to figure out how to configure and integrate
Spring MVC with Thymeleaf. We let Spring Boot do the heavy lifting.

But that's not enough, right? Any real application is going to also have some
JavaScript. Love it or hate it, JavaScript is the engine for frontend web
development. See how the following code lets us make things more modern by
creating modern.groovy:

@Grab("org.webjars:jquery:2.1.1")
@Grab("thymeleaf-spring4")
@Controller
class ModernApp {

 def chapters = ["Quick Start With Groovy",
 "Quick Start With Java",
 "Debugging and Managing Your App",
 "Data Access with Spring Boot",
 "Securing Your App"]

 @RequestMapping("/")
 def home(@RequestParam(value="name", defaultValue="World")
String n) {
 new ModelAndView("modern")
 .addObject("name", n)
 .addObject("chapters", chapters)
 }
}

A single @Grab statement pulls in jQuery 2.1.1. The rest of our server-side

Groovy code is the same as before.

There are multiple ways to use JavaScript libraries. For Java developers, it's
especially convenient to use the WebJars project (http://webjars.org), where
lots of handy JavaScript libraries are wrapped up with Maven coordinates.
Every library is found on the webjars<library>/<version>/<module> path.
To top it off, Spring Boot comes with prebuilt support. Perhaps you noticed
this buried in earlier console outputs:

...
2014-05-20 08:33:09.062 ... : Mapped URL path [webjars**]
onto handler of [...
...

With jQuery added to our application, we can amp up our template
(templates/modern.html) like this:

<html>
 <head>
 <title>Learning Spring Boot - Chapter 1</title>
 <script src="webjars/jquery/2.1.1/jquery.min.js">
</script>
 <script>
 $(document).ready(function() {
 $('p').animate({
 fontSize: '48px',
 }, "slow");
 });
 </script>
 </head>
 <body>
 <p th:text="'Hello, ' + ${name}"></p>

 <li th:each="chapter : ${chapters}"
th:text="${chapter}">

 </body>
</html>

What's different between this template and the previous one?

It has a couple extra <script> tags in the head section:

http://webjars.org

The first one loads jQuery from webjarsjquery/2.1.1/jquery.min.js
(implying that we can also grab jquery.js if we want to debug jQuery)
The second script looks for the <p> element containing our Hello, world!
message and then performs an animation that increases the font size to 48
pixels after the DOM is fully loaded into the browser

If we run spring run modern.groovy and visit http://localhost:8080,
then we can see this simple but stylish animation (which naturally doesn't
render as well in a printed book). It shows us that all of jQuery is available for
us to work with on our application.

Using Bower instead of WebJars
WebJars isn't the only option when it comes to adding JavaScript to our app.
More sophisticated UI developers might use Bower (http://bower.io), a
popular JavaScript library management tool. WebJars are useful for Java
developers, but not every library has been bundled as a WebJar. There is also
a huge community of frontend developers more familiar with Bower and
NodeJS that will probably prefer using their standard tool chain to do their
jobs.

We'll see how to plug that into our app. First, it's important to know some basic
options. Spring Boot supports serving up static web resources from the
following paths:

META-INFresources/

/resources/

/static/

/public/

To craft a Bower-based app with Spring Boot, we first need to craft a
.bowerrc file in the same folder we plan to create our Spring Boot CLI
application. Let's pick public/ as the folder of choice for JavaScript modules
and put it in this file, as shown in the following code:

{
 "directory": "public/"
}

Tip

Do I have to use public? No. Again, you can pick any of the folders listed
previously and Spring Boot will serve up the code. It's a matter of taste and
semantics.

Our first step towards a Bower-based app is to define our project by
answering a series of questions (this only has to be done once):

$ bower init

http://bower.io

[?] name: app_with_bower
[?] version: 0.1.0
[?] description: Learning Spring Boot - bower sample
[?] main file:
[?] what types of modules does this package expose? amd
[?] keywords:
[?] authors: Greg Turnquist <gturnquist@pivotal.io>
[?] license: ASL
[?] homepage:
http://blog.greglturnquist.com/category/learning-spring-boot
[?] set currently installed components as dependencies? No
[?] add commonly ignored files to ignore list? Yes
[?] would you like to mark this package as private which
prevents it from being accidentally published to the registry?
Yes
...
[?] Looks good? Yes

Now that we have set our project, let's do something simple such as install
jQuery with the following command:

$ bower install jquery --save
bower jquery#* cached
git://github.com/jquery/jquery.git#2.1.1
bower jquery#* validate 2.1.1 against
git://github.com/jquery/jquery.git#*

These two commands will have created the following bower.json file:

{
 "name": "app_with_bower",
 "version": "0.1.0",
 "authors": [
 "Greg Turnquist <gturnquist@pivotal.io>"
],
 "description": "Learning Spring Boot - bower sample",
 "license": "ASL",
 "homepage":
"http://blog.greglturnquist.com/category/learning-spring-
boot",
 "private": true,
 "ignore": [
 "**/.*",
 "node_modules",

 "bower_components",
 "public/",
 "test",
 "tests"
],
 "dependencies": {
 "jquery": "~2.1.1"
 }
}

It will also have installed jQuery 2.1.1 into our app with the following
directory structure:

public
└── jquery
 ├── MIT-LICENSE.txt
 ├── bower.json
 └── dist
 ├── jquery.js
 └── jquery.min.js

Tip

We must include --save (two dashes) whenever we install a module. This
ensures that our bower.json file is updated at the same time, allowing us to
rebuild things if needed.

The altered version of our app with WebJars removed should now look like
this:

@Grab("thymeleaf-spring4")
@Controller
class ModernApp {

 def chapters = ["Quick Start With Groovy",
 "Quick Start With Java",
 "Debugging and Managing Your App",
 "Data Access with Spring Boot",
 "Securing Your App"]

 @RequestMapping("/")
 def home(@RequestParam(value="name", defaultValue="World")
String n) {

 new ModelAndView("modern_with_bower")
 .addObject("name", n)
 .addObject("chapters", chapters)
 }
}

The view name has been changed to modern_with_bower, so it doesn't collide
with the previous template if found in the same folder.

This version of the template, templates/modern_with_bower.html, should
look like this:

<html>
 <head>
 <title>Learning Spring Boot - Chapter 1</title>
 <script src="jquery/dist/jquery.min.js"></script>
 <script>
 $(document).ready(function() {
 $('p').animate({
 fontSize: '48px',
 }, "slow");
 });
 </script>
 </head>
 <body>
 <p th:text="'Hello, ' + ${name}"></p>

 <li th:each="chapter : ${chapters}"
th:text="${chapter}">

 </body>
</html>

The path to jquery is now jquery/dist/jquery.min.js. The rest is the
same as the WebJars example. We just launch the app with spring run
modern_with_bower.groovy and navigate to http://localhost:8080.
(Might need to refresh the page to ensure loading of the latest HTML.) The
animation should work just the same.

The options shown in this section can quickly give us a taste of how easy it is
to use popular JavaScript tools with Spring Boot. We don't have to fiddle with
messy tool chains to achieve a smooth integration. Instead, we can use them the

way they are meant to be used.

What about an app that is all frontend with
no backend?
Perhaps we're building an app that gets all its data from a remote backend. In
this age of RESTful backends, it's not uncommon to build a single page
frontend that is fed data updates via AJAX.

Spring Boot's Groovy support provides the perfect and arguably smallest way
to get started. We do so by creating pure_javascript.groovy, as shown in
the following code:

@Controller
class JsApp { }

That doesn't look like much, but it accomplishes a lot. Let's see what this tiny
fragment of code actually does for us:

The @Controller annotation, like @RestController, causes Spring
Boot to auto-configure Spring MVC.
Spring Boot, as we've seen throughout this chapter, will launch an
embedded Apache Tomcat server.
Spring Boot will serve up static content from resources, static, and
public. Since there are no Spring MVC routes in this tiny fragment of
code, things will fall to resource resolution.

Next, we can create a static/index.html page as follows:

<html>
 Greetings from pure HTML which can, in turn, load
JavaScript!
</html>

Run spring run pure_javascript.groovy and navigate to
http://localhost:8080. We will see the preceding plain text shown in our
browser as expected. There is nothing here but pure HTML being served up by
our embedded Apache Tomcat server. This is arguably the lightest way to
serve up static content. Use spring jar, as we saw earlier in this chapter, and
it's possible to easily bundle up our client-side app to be installed anywhere.

Spring Boot's support for static HTML, JavaScript, and CSS opens the door to
many options. We can add WebJar annotations to JsApp or use Bower to
introduce third-party JavaScript libraries in addition to any custom client-side
code. We might just manually download the JavaScript and CSS. No matter
what option we choose, Spring Boot CLI certainly provides a super simple
way to add rich-client power for app development. To top it off, RESTful
backends that are decoupled from the frontend can have different iteration
cycles as well as different development teams.

Tip

You might need to configure CORS (http://spring.io/understanding/CORS) to
properly handle making remote calls that don't go back to the original server.

http://spring.io/understanding/CORS

Adding production-ready support
features
So far, we have created a Spring MVC app with minimal code. We added
views and JavaScript. We are on the verge of a production release.

Before deploying our rapidly built and modernized web application, we might
want to think about potential issues that might arise in production:

What do we do when the system administrator wants to configure his
monitoring software to ping our app to see if it's up?
What happens when our manager wants to know the metrics of people
hitting our app?
What are we going to do when the Ops center supervisor calls us at 2:00
a.m. and we have to figure out what went wrong?

The last feature we are going to introduce in this chapter is Spring Boot's
Actuator module and CRaSH remote shell support (http://www.crashub.org).
These two modules provide some super slick, Ops-oriented features that are
incredibly valuable in a production environment.

We first need to update our previous code (we'll call it ops.groovy), as
shown in the following code:

@Grab("spring-boot-actuator")
@Grab("spring-boot-starter-remote-shell")
@Grab("org.webjars:jquery:2.1.1")
@Grab("thymeleaf-spring4")
@Controller
class OpsReadyApp {
 @RequestMapping("/")
 def home(@RequestParam(value="name", defaultValue="World")
String n) {
 new ModelAndView("modern")
 .addObject("name", n)
 }
}

http://www.crashub.org

This app is exactly like the WebJars example with two key differences: it adds
@Grab("spring-boot-actuator") and @Grab("spring-boot-starter-
remote-shell").

When you run this version of our app, the same business functionality is
available that we saw earlier, but there are additional HTTP endpoints
available:

Actuator
endpoint Description

/autoconfig This reports what Spring Boot did and didn't auto-configure and why

/beans
This reports all the beans configured in the application context (including ours as well as
the ones auto-configured by Boot)

/configprops This exposes all configuration properties

/dump This creates a thread dump report

/env This reports on the current system environment

/health This is a simple endpoint to check life of the app

/info This serves up custom content from the app

/metrics This shows counters and gauges on web usage

/mappings This gives us details about all Spring MVC routes

/trace This shows details about past requests

Pinging our app for general health
Each of these endpoints can be visited using our browser or using other tools
such as curl. For example, let's assume we ran spring run ops.groovy and then
opened up another shell. From the second shell, let's run the following curl
command:

$ curl localhost:8080/health
{"status":"UP"}

This immediately solves our first need listed previously. We can inform the
system administrator that he or she can write a management script to
interrogate our app's health.

Gathering metrics
Be warned that each of these endpoints serves up a compact JSON document.
Generally speaking, command-line curl probably isn't the best option. While
it's convenient on *nix and Mac systems, the content is dense and hard to read.
It's more practical to have:

A JSON plugin installed in our browser (such as JSONView at
http://jsonview.com)
A script that uses a JSON parsing library if we're writing a management
script (such as Groovy's JsonSlurper at
http://groovy.codehaus.org/gapi/groovy/json/JsonSlurper.html or
JSONPath at https://code.google.com/p/json-path)

Assuming we have JSONView installed, the following screenshot shows a
listing of metrics:

http://jsonview.com
http://groovy.codehaus.org/gapi/groovy/json/JsonSlurper.html
https://code.google.com/p/json-path

It lists counters for each HTTP endpoint. According to this, /metrics has
been visited four times with a successful 200 status code. Someone tried to
access /foo, but it failed with a 404 error code. The report also lists gauges
for each endpoint, reporting the last response time. In this case, /metrics took
2 milliseconds. Also included are some memory stats as well as the total CPUs
available.

Tip

It's important to realize that the metrics start at 0. To generate some numbers,
you might want to first click on some links before visiting /metrics.

The following screenshot shows a trace report:

It shows the entire web request and response for curl
localhost:8080/health.

This provides a basic framework of metrics to satisfy our manager's needs. It's
important to understand that metrics gathered by Spring Boot Actuator aren't
persistent across application restarts. So to gather long-term data, we have to
gather them and then write them elsewhere.

With these options, we can perform the following:

Write a script that gathers metrics every hour and appends them to a
running spreadsheet somewhere else in the filesystem, such as a shared
drive. This might be simple, but probably also crude.
To step it up, we can dump the data into a Hadoop filesystem for raw
collection and configure Spring XD (http://projects.spring.io/spring-xd/)
to consume it. Spring XD stands for Spring eXtreme Data. It is an open
source product that makes it incredibly easy to chain together sources and
sinks comprised of many components, such as HTTP endpoints, Hadoop
filesystems, Redis metrics, and RabbitMQ messaging. Unfortunately, there
is no space to dive into this subject.

Tip

With any monitoring, it's important to check that we aren't taxing the system too
heavily. The same container responding to business-related web requests is
also serving metrics data, so it will be wise to engage profilers periodically to
ensure that the whole system is performing as expected.

http://projects.spring.io/spring-xd/

Detailed management with CRaSH
So what can we do when we receive that 2:00 a.m. phone call from the Ops
center? After either coming in or logging in remotely, we can access the
convenient CRaSH shell we configured.

Every time the app launches, it generates a random password for SSH access
and prints this to the local console:

2014-06-11 23:00:18.822 ... : Configuring property
ssh.port=2000 from properties
2014-06-11 23:00:18.823 ... : Configuring property ssh.auth-
timeout=600000 fro...
2014-06-11 23:00:18.824 ... : Configuring property ssh.idle-
timeout=600000 fro...
2014-06-11 23:00:18.824 ... : Configuring property auth=simple
from properties
2014-06-11 23:00:18.824 ... : Configuring property
auth.simple.username=user f...
2014-06-11 23:00:18.824 ... : Configuring property
auth.simple.password=bdbe4a...

We can easily see that there's SSH access on port 2000 via a user if we use
this information to log in:

$ ssh -p 2000 user@localhost
Password authentication
Password:
 . ____ _
\ ___' _(_) _ _ \ \ \ \
(()__ | ' | '_| | ' \/ ' | \ \ \ \
\\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, |
=========|_|==============|___/=/_/_/_/
:: Spring Boot :: (v1.1.6.RELEASE) on retina
>

There's a fistful of commands:

help: This gets a listing of available commands
dashboard: This gets a graphic, text-based display of all the threads,

environment properties, memory, and other things
autoconfig: This prints out a report of which Spring Boot auto-
configuration rules were applied and which were skipped (and why)

All of the previous commands have man pages:

> man autoconfig
NAME
 autoconfig - Display auto configuration report from
ApplicationContext

SYNOPSIS
 autoconfig [-h | --help]

STREAM
 autoconfig <java.lang.Void, java.lang.Object>

PARAMETERS
 [-h | --help]
 Display this help message
...

There are many commands available to help manage our application. More
details are available at http://www.crashub.org/1.3/reference.html.

This is just a taste of what's possible. Later on in Chapter 2, Quick Start with
Java, and Chapter 3, Debugging and Managing Your App, we will dig in
deeper to discover ways to write custom metrics, custom health checks, and
custom CRaSH commands.

http://www.crashub.org/1.3/reference.html

Summary
We rapidly crafted a Spring MVC application using the Spring stack on top of
Apache Tomcat with little configuration from our end. We plugged in jQuery
(and could have included CSS if we wanted). We also learned how to write
both JUnit and Spock test cases. We plugged in Spring Boot's Actuator module
as well as the CRaSH remote shell, configuring it with metrics, health, and
management features so that we can monitor it in production by merely adding
two lines of extra code.

In the next chapter, we'll do something quite similar, but with pure Java and a
sample application that focuses on fetching GitHub information.

Chapter 2. Quick Start with Java
"With Boot you deploy everywhere you can find a JVM basically."

--Oliver Gierke @olivergierke

In the previous chapter, we saw how quickly an application can be created
with just a few lines of code. To fit the more commonly used paradigm, this
chapter (and the rest of the book) will use a project with a build file and Java
code instead. However, we'll still see how Spring Boot makes things quick and
easy.

In this chapter, we are going to build an app that scans GitHub issues and uses
Spring Boot to help guide us in reducing the complexity of integrating multiple
Spring projects as well as other third-party libraries.

In this chapter, we will be:

Using http://start.spring.io to create a bare bones Spring Boot project
with Gradle support
Creating a simple app that looks for open issues in multiple GitHub
repositories
Supplying GitHub credentials using Boot's über easy property support
Learning how Boot finds templates
Adding mobile support using Spring Mobile and jQuery Mobile
Bundling up the application as a runnable JAR and deploying it to Cloud
Foundry
Adding production-ready support with Actuator and then writing a script
to poll for usage metrics

http://start.spring.io

Creating an empty project with
start.spring.io
To kick things off, we need a new project. Instead of starting from absolutely
nothing, Spring Boot provides a website that is used to create new projects at
http://start.spring.io. We enter some information, pick a set of desired options,
and then download either a build file or a zipped-up project.

http://start.spring.io

The screen is a bit long and was cut off. The following table shows you all the
settings filled in for this example. However, to see the code behind this
website, visit https://github.com/spring-io/initializr. To whet your appetite, the
site is, in fact, a Spring Boot / Groovy app using the same tools covered in the
previous chapter.

https://github.com/spring-io/initializr

As shown in the previous screenshot, we entered this information:

Field Value

Group learningspringboot

Artifact issue-manager

Name Issue Manager

Description Learning Spring Boot

Package Name learningspringboot

Type Gradle Project

Packaging Jar

Java Version 1.8

Language Java

Project dependencies Thymeleaf

Click on the Generate Project button; it downloads starter.zip. Let's take
a peek inside the ZIP file:

$ unzip -l <downloaded zip file>
Archive: starter.zip
Length Date Time Name
-------- ---- ---- ----
 0 06-13-14 03:37 src/
 0 06-13-14 03:37 src/main/
 0 06-13-14 03:37 src/main/java/
 0 06-13-14 03:37 src/main/java/learningspringboot/
 0 06-13-14 03:37 src/main/resources/
 0 06-13-14 03:37 src/test/

 0 06-13-14 03:37 src/test/java/
 0 06-13-14 03:37 src/test/java/learningspringboot/
 1421 06-13-14 03:37 build.gradle
 466 06-13-14 03:37
src/main/java/learningspringboot/Application.java
 0 06-13-14 03:37
src/main/resources/application.properties
 404 06-13-14 03:37
src/test/java/learningspringboot/ApplicationTests.java
-------- -------
 2291 12 files

Let's take a look at what we have:

A standard Gradle project layout (src/main/java,
src/main/resources, src/test/java, and src/test/resources)
The root Java package, which is learningspringboot
A build.gradle file, which we'll look at later in this chapter
A couple of classes that are already created: Application.java and
ApplicationTests.java

A properties file (application.properties) that we'll discuss in the
next section

Tip

Feel free to pick to pick the build system you want. Spring Boot has equivalent
support for Maven. It's also possible to use Ant, but Spring Boot has no special
support for it. For reasons of space and other factors, this book will focus on
Gradle and not show apps expressed in any other build system.

Before looking at the generated code, let's look at the build file:

// tag::plugins[]
buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath("org.springframework.boot:springboot-gradle-
plugin:1.1.6.RELEASE")
 }
}

// end::plugins[]

apply plugin: 'java'
apply plugin: 'eclipse'
apply plugin: 'idea'
apply plugin: 'springboot'

jar {
 baseName = 'issue-manager'
 version = '0.0.1-SNAPSHOT'
}

// tag::version[]
sourceCompatibility = 1.8
targetCompatibility = 1.8
// end::version[]

repositories {
 mavenCentral()
}

// tag::dependencies[]
dependencies {
 compile("org.springframework.boot:springboot-starter-
thymeleaf")
 testCompile("org.springframework.boot:springboot-starter-
test")
}
// end::dependencies[]

task wrapper(type: Wrapper) {
 gradleVersion = '2.1'
}

There are a quite a few parts to this file, so let's walk through them bit by bit.

Tip

You might see some comments such as <!-- tag::x-y-z[] --> in
build.gradle and other files throughout this book. These are simple
comments that are used to help pull in subsections for more detailed
explanations and are not required to run any code you write.

The first important nugget at the top is this:

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath("org.springframework.boot:springboot-gradle-
plugin:1.1.6.RELEASE")
 }
}

This shows you our project, which is configured to pull down packages from
mavenCentral. However, more importantly, our package is using
springboot-gradle-plugin, Version 1.1.6.RELEASE. A key feature that we
will see in this chapter and through the rest of this book is Spring Boot's series
of predefined versions for many third-party libraries (not just Spring projects).
By using this plugin, Spring Boot will set the version number for any
dependency we declare that it happens to manage.

Continuing to check out our build file, we can see a list of dependencies:

dependencies {
 compile("org.springframework.boot:springboot-starter-
thymeleaf")
 testCompile("org.springframework.boot:springboot-starter-
test")
}

These include the following:

springboot-starter-thymeleaf: This pulls in dependencies that are
required in order to use Thymeleaf as our view engine
springboot-starter-test: This pulls in Spring test utilities when we
are running tests

The first one matches the checkbox we picked on the form (but couldn't see
directly due to the cutoff): Thymeleaf. The second one is included in all
projects, given the popularity of automated testing in this day and age.

So, what are these quirky packages? They definitely look different than any

packages we might have used in the past, which we will find out about in the
next section. Before we do that, let's look at another key setting:

sourceCompatibility = 1.8
targetCompatibility = 1.8

This specifies that the project is using Java 8. While Spring Boot provides
support as far back as Java 6, we plan to take advantage of the latest features
that are out there throughout this book.

Spring Boot starters
The packages that were plugged in by start.spring.io are known as Spring Boot
starters. They are virtual packages that are deployed to Maven central. Their
job is to pull in other dependencies while containing no code of their own.

To go into more detail about starters, let's pick this one: springboot-
starter-thymeleaf. If we look at its pom.xml build file online
(https://github.com/spring-
projects/springboot/tree/v1.1.6.RELEASE/springboot-starters/springboot-
starter-thymeleaf/pom.xml), we will see the following dependencies:

Dependency What it provides

springboot-
starter

A starter that brings in core dependencies that are critical for any Spring Boot-based
project

springboot-
starter-web

A starter that brings in embedded Tomcat, Jackson JSON binding, JSR 303 validation
APIs, and Spring Web plus MVC support

spring-core Critical parts of the Spring Framework (http://projects.spring.io/springframework)

thymeleaf-
spring4

Core pieces of the Thymeleaf view engine along with Spring 4 integration

thymeleaf-
layout-dialect

Thymeleaf dialect module

Tip

Wait, I thought this book was focused on Gradle! That's true, but Spring Boot
itself is built with Maven. It is valuable to look at any of Spring Boot's starters
in order to glean what they do.

Spring Boot is designed to help us build good apps rapidly. A key piece of
making this happen is how Boot plugs in its opinion. When we include
springboot-starter-thymeleaf, Spring Boot has the opinion that we'll

http://start.spring.io
https://github.com/spring-projects/spring-boot/tree/v1.1.6.RELEASE/spring-boot-starters/spring-boot-starter-thymeleaf/pom.xml
http://projects.spring.io/spring-framework

probably want embedded Tomcat, Jackson JSON support, JSR 303 validation,
and Spring Web MVC. So, it adds them as required dependencies.

Notice how there are no version numbers in the dependencies section? This
is because each dependency we see listed is preset with a version number
supplied by springboot-gradle-plugin. It's another opinion from Spring
Boot about the best version of the library to use in conjunction with all the
others.

The last thing Boot does is make auto-configuration decisions. The previous
chapter showed us many examples of this, and it's happening here as well.
Spring Boot configured view resolvers, an embedded servlet container, and
other components that are commonly recommended for Spring MVC apps.

As we continue along this chapter, and throughout this book, we'll get to see
more opinions that Boot inserts (and how it backs off when we make a
different decision).

Tip

This amalgamation of libraries and chosen versions is known as Spring IO
(http://spring.io/platform) and offers an out-of-the-box virtual collection of
libraries that are verified to work together. Spring IO is very easy to use, as it's
served up through the industry-standard Maven public repositories; it's not a
downloadable bundle that becomes outdated the day after you get it.

http://spring.io/platform

Running a Spring Boot application
So far, we have a bare bones project. There isn't much code. However,
http://start.spring.io creates a single Application class; let's look at that first:

package learningspringboot;

import org.springframework.boot.SpringApplication;
import
org.springframework.boot.autoconfigure.EnableAutoConfiguration
;
import org.springframework.context.annotation.ComponentScan;

@ComponentScan
@EnableAutoConfiguration
public class Application {

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

Let's break this down:

@ComponentScan: This tells Spring to look for classes with @Component,
@Configuration, @Repository, @Service, and @Controller and wire
them into the app context as beans. By default, it scans for classes found
underneath the package where the annotation is declared.
@EnableAutoConfiguration: This turns on Boot's autoconfiguration
behavior.
public static void main(): This uses Boot's
SpringApplication.run() method as a convenient way to launch the
app.

The @EnableAutoConfiguration key annotation is used for a Spring Boot-
based application. It tells Boot to turn on all autoconfiguration options. Each of
these options looks at various aspects of the application and then makes
decisions on adding extra beans. It makes decisions mostly based on the
classpath and settings found inside application.properties.

http://start.spring.io

Tip

Consider this example of autoconfiguration. If Boot spots
JmsTemplate.class on the classpath, it's an indication that the developer has
added spring-jms. In this situation, Boot will automatically create an instance
of JmsTemplate and make it available for injection to other Spring beans. The
developer must still provide a ConnectionFactory bean. More details on
how this works can be found in Chapter 3, Debugging and Managing Your
App, where we will use JmsAutoConfiguration as an example.

Spring Boot's SpringApplication.run() method conveniently accepts a
class as well as command-line arguments. In this case, it's plugging in the
Application class, as this is the simplest way to build an app. We can start
adding bean definitions right here or branch off in other places.

Adding Spring Social GitHub
We have discussed building an app that can scan GitHub repositories for open
issues. The first step is to add a key project, which is Spring Social GitHub:

1. First, we need to visit http://projects.spring.io/spring-social-github.
2. From there, we can scroll down and find the latest release. In this case,

we are using 1.0.0.BUILD-SNAPSHOT, as M4 has some outstanding
issues.

3. There's a slider that lets us pick our build system and shows us the content
that we need to insert into our project's dependencies:

compile("org.springframework.social:spring-social-
github:1.0.0.BUILD-SNAPSHOT")

4. This dependency will load Spring Social GitHub. Since it's not a general
release, we need to add this to the repositories section:

repositories {
 mavenCentral()
 maven { url "https://repo.spring.io/libs-snapshot" }
}

By default, start.spring.io will include mavenCentral in the repositories
section. In order to access Spring Social GitHub's BUILD-SNAPSHOT version,
we had to add the second Maven URL.

With these two bits added to our build file, we are ready to build our app!

http://projects.spring.io/spring-social-github
http://start.spring.io

Digging into GitHub issues
Let's continue working on our simple app that will fetch GitHub issues from
multiple repositories. To fetch GitHub issues, we need to establish a domain
object:

package learningspringboot;

import org.springframework.social.github.api.GitHubIssue;

public class Issue {

 private String repo;
 private GitHubIssue githubIssue;

 public Issue(String repo, GitHubIssue gitHubIssue) {
 this.repo = repo;
 this.githubIssue = gitHubIssue;
 }

 public String getRepo() {
 return repo;
 }

 public GitHubIssue getGithubIssue() {
 return githubIssue;
 }
}

Spring Social GitHub comes with a GitHubIssue class, but this class doesn't
include the name of the repository for a given issue. The Issue class listed in
the preceding code is basically a wrapper that adds this extra bit of
information. It's designed to be created through a constructor call that
minimizes the risk of initializing it incompletely. It also includes getter calls in
order to retrieve the data fields.

Next, we need a service that uses Spring Social GitHub's GitHubTemplate to
retrieve issues:

package learningspringboot;

import java.util.ArrayList;
import java.util.List;

import org.springframework.social.github.api.GitHubIssue;
import
org.springframework.social.github.api.impl.GitHubTemplate;
import org.springframework.stereotype.Service;

@Service
public class IssueManager {

 String githubToken =
"ccdbf257f052a594a0e7bd2823a69ae38a48ffb1";

 String org = "spring-projects";

 String[] repos = new String[] { "springboot", "springboot-
issues" };

 GitHubTemplate gitHubTemplate = new
GitHubTemplate(githubToken);

 public List<Issue> findOpenIssues() {
 List<Issue> openIssues = new ArrayList<>();

 for (String repo : repos) {
 final List<GitHubIssue> issues = gitHubTemplate
 .repoOperations().getIssues(org, repo);

 for (GitHubIssue issue : issues) {
 if (issue.getState().equals("open")) {
 openIssues.add(new Issue(repo, issue));
 }
 }
 }

 return openIssues;

 }
}

This class is marked as @Service, which means that it will be picked up and
added to the app context by @ComponentScan. All of Spring's component
annotations inherit from @Component, which gets them picked up by component

scanning. It has a hardcoded GitHub passcode and a hardcoded organization
name, and will fetch issues from springboot and springboot-issues. This
service also has a GitHubTemplate.

The key function of this class, which is findOpenIssues, loops through the
list of repositories, and then uses GitHubTemplate to retrieve open issues. It
gathers them into a standard list, wrapped inside the Issue object we coded
earlier.

Creating a GitHub access token
From where did we get this cryptic githubToken value of
ccdbf257f052a594a0e7bd2823a69ae38a48ffb1? This is an oauth access
code that is required to plug in and talk to GitHub. To create one of your own,
you need to create an account at https://github.com. After creating your
account, perform the following steps:

1. Assuming the account is set up, visit
https://github.com/settings/applications.

2. Scroll down until you see Personal access tokens.
3. Click on Generate new token. You'll probably be prompted to confirm

your password.
4. Enter a description such as Learning Spring Boot, accept the default

access controls, and click on Generate token.

You'll now see a newly minted cryptic token code with a copy-to-clipboard
icon to the right. Grab it and paste it into your code, and you're ready! Have a
look at the following screenshot:

Tip

If you thought all the hardcoded values weren't great, you're right. It is a bad

https://github.com
https://github.com/settings/applications

design pattern. We'll remedy this design flaw later in this chapter.

The last bit of Java code that is required is a web controller that serves up a
table of issues:

package learningspringboot;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.RequestMapping;

@Controller
public class IssueController {

 private IssueManager issueManager;

 @Autowired
 public IssueController(IssueManager issueManager) {
 this.issueManager = issueManager;
 }

 @RequestMapping(value = "/")
 public String index(Model model) {
 model.addAttribute("issues",
issueManager.findOpenIssues());
 return "index";
 }
}

The class is marked as a Spring MVC @Controller. The constructor is tagged
@Autowired, so when the controller is created by the Spring container, it will
initialize its IssueManager class using constructor injection.

The index() method is linked to the web route "/" through the
@RequestMapping annotation. This particular endpoint includes a Model
parameter, which is automatically supplied by Spring MVC. In this case, it
invokes issueManager.findOpenIssues() and stores it in the model's
issues entry. Then, it returns the name of the view to be rendered, which is
index.html.

Note

Constructor injection is currently the recommended way to wire Spring beans.
It supports immutable bean configurations in a better manner and avoids beans
getting partially configured at any particular time
(http://docs.spring.io/spring/docs/4.0.7.RELEASE/springframework-
reference/htmlsingle/#beans-dependency-resolution).

The last bit of code we need is a Thymeleaf template created at
src/main/resources/templates/index.html:

<html xmlns:th="http://www.thymeleaf.org">
<body>
 <p>Open GitHub Issues</p>
 <table>
 <thead>
 <tr>
 <td>Repo</td>
 <td>Issue</td>
 <td>Title</td>
 </tr>
 </thead>
 <tbody>
 <tr th:each="issue : ${issues}">
 <td th:text="${issue.repo}"></td>
 <td>
 <a th:href="${issue.githubIssue.url}"
target="_blank">
 <span
th:text="${issue.githubIssue.number}">
 <a>
 </td>
 <td th:text="${issue.githubIssue.title}"></td>
 </tr>
 </tbody>
 </table>
</body>
</html>

There isn't a lot here. The core piece is the dynamically generated table. The
template uses a Thymeleaf for-each loop. The <tr th:each="issue :
${issues}"> tag generates one <tr> row for each entry in ${issues}. From
there, we are able to access property values in order to populate text values
and URL links, and also show the title of each issue.

http://docs.spring.io/spring/docs/4.0.7.RELEASE/spring-framework-reference/htmlsingle/#beans-dependency-resolution

We can now run it at this stage! There are a couple of approaches:

Inside our IDE, we can simply go to Application and run public
static void main. (If you've developed web apps for some time, this is
super convenient!)
The springboot-gradle-plugin comes with a handy command to run
Spring Boot apps.

Note

Are you using Maven instead of Gradle? Spring Boot has feature parity with
springboot-maven-plugin. Refer to
http://docs.spring.io/springboot/docs/1.1.6.RELEASE/reference/htmlsingle/#using-
boot-maven-plugin for more details.

Let's engage springboot-gradle-plugin by launching the app with Gradle:

$./gradlew clean bootRun
...
 . ____ _
\ ___' _(_) _ _ \ \ \ \
(()__ | ' | '_| | ' \/ ' | \ \ \ \
\\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, |
=========|_|==============|___/=/_/_/_/
:: Spring Boot :: (v1.1.6.RELEASE)

2014-06-24 23:37:17.164 ... : Starting Application on retina
with PID 10443 (/...
2014-06-24 23:37:17.213 ... : Refreshing
org.springframework.boot.context.embe...
2014-06-24 23:37:17.833 ... : Overriding bean definition for
bean 'beanNameVie...
2014-06-24 23:37:18.332 ... : JSR-330 'javax.inject.Inject'
annotation found a...
2014-06-24 23:37:18.750 ... : Server initialized with port:
8080
2014-06-24 23:37:18.993 ... : Starting service Tomcat
2014-06-24 23:37:18.993 ... : Starting Servlet Engine: Apache
Tomcat/7.0.54
2014-06-24 23:37:19.089 ... : Initializing Spring embedded
WebApplicationContext

http://docs.spring.io/spring-boot/docs/1.1.6.RELEASE/reference/htmlsingle/#using-boot-maven-plugin

2014-06-24 23:37:19.089 ... : Root WebApplicationContext:
initialization compl...
2014-06-24 23:37:19.578 ... : Mapping servlet:
'dispatcherServlet' to [/]
2014-06-24 23:37:19.581 ... : Mapping filter:
'hiddenHttpMethodFilter' to: [/*]
2014-06-24 23:37:19.975 ... : Mapped URL path
[/**/favicon.ico] onto handler o...
2014-06-24 23:37:20.053 ... : Mapped "{[/],methods=[],params=
[],headers=[],con...
2014-06-24 23:37:20.056 ... : Mapped "{[/error],methods=
[],params=[],headers=[...
2014-06-24 23:37:20.056 ... : Mapped "{[/error],methods=
[],params=[],headers=[...
2014-06-24 23:37:20.082 ... : Mapped URL path [/**] onto
handler of type [clas...
2014-06-24 23:37:20.083 ... : Mapped URL path [/webjars/**]
onto handler of ty...
2014-06-24 23:37:20.464 ... : Registering beans for JMX
exposure on startup
2014-06-24 23:37:20.502 ... : Tomcat started on port(s):
8080/http
2014-06-24 23:37:20.504 ... : Started Application in 3.896
seconds (JVM runnin...

Note

What is gradlew? It's the gradle wrapper, which is a handy tool for any
Gradle-based project. Let's assume that you have already downloaded Gradle
from http://www.gradle.org or installed it using http://gvmtool.net. Inside your
project, you can run gradle wrapper, and it will create a runnable
environment with gradlew and gradlew.bat scripts. Push them out with your
project, and your community won't be obligated to install Gradle. It also lets
you control which version of Gradle is used for your project.

With the app running, we can visit http://localhost:8080 and see the
results.

http://www.gradle.org
http://gvmtool.net

Delving into Spring Boot's property
support
In the previous section, we pointed out how hardcoding key attributes is a bad
design pattern. Why? It makes it difficult to create updates. It also forces us to
build different artifacts for every place our app might be deployed. Certain
values such as githubToken that should remain secret become visible if our
source code is released. Properties and environment variables provide a better
alternative location to keep such sensitive and dynamic information.

Java properties and their associated files have existed for a long time, but
Java's built-in APIs have always been clunky and require the developer to
exert a lot of effort. This probably explains the relative lack of adoption by the
industry. Spring Boot revitalizes the core idea behind properties, as we'll see.

The following code is an update to IssueManager:

package learningspringboot;

import java.util.ArrayList;
import java.util.List;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.social.github.api.GitHubIssue;
import
org.springframework.social.github.api.impl.GitHubTemplate;
import org.springframework.stereotype.Service;

@Service
public class IssueManager implements InitializingBean {

 @Value("${github.token}")
 String githubToken;

 @Value("${org}")
 String org;

 @Value("${repos}")
 String[] repos;

 GitHubTemplate gitHubTemplate;

 @Override
 public void afterPropertiesSet() throws Exception {
 this.gitHubTemplate = new GitHubTemplate(githubToken);
 }

 public List<Issue> findOpenIssues() {
 List<Issue> openIssues = new ArrayList<>();

 for (String repo : repos) {
 for (GitHubIssue issue : gitHubTemplate
 .repoOperations().getIssues(org, repo)) {
 if (issue.getState().equals("open")) {
 openIssues.add(new Issue(repo, issue));
 }
 }
 }

 return openIssues;

 }
}

This version is almost the same as the previous IssueManager class. The
difference is that we are using Spring's @Value annotation to glean properties
instead of hardcoding them. Any of these newly defined properties can be
injected from multiple sources. They are cascaded in the following order:

Default values can be supplied directly with
@Value("${propertyName:defaultValue}")

@Value defaults can be overridden in an application.properties file,
which gets bundled with the app in a JAR file
Bundled properties can be overridden in an auxiliary
application.properties file adjacent to the deployed JAR
Auxiliary properties can be overridden by environment variables, either
from the command line, a .bashrc file, or Windows environment settings
In a cloud environment, environment variables can be supplied by the
configuration, as we'll see toward the end of this chapter

Our code also creates GitHubTemplate using Spring's InitializingBean
interface. The afterPropertiesSet method is called after all properties are
configured by Spring's IoC container. This ensures that githubToken is
populated when we create the template.

As we don't have default values, we need to create
src/main/resources/application.properties:

org=spring-projects
repos=springboot,springboot-issues

Let's see what is happening:

org: This is set to spring-projects. Our app's GitHubTemplate
instance will use this to query https://github.com/spring-projects.
repos: This is converted by Spring into String[]{"springboot",
"springboot-issues"}.

As a bonus, Spring Boot provides relaxed rules on name binding. This means
that we can set githubToken using either github.token or GITHUB_TOKEN as
command-line environment variables. This provides universal support on *nix,
Mac, and Windows. There is no need to write any code to process properties
files!

Let's try out the latter approach:

$ GITHUB_TOKEN=ccdbf257f052a594a0e7bd2823a69ae38a48ffb1
./gradlew clean bootRun

In firing up this app, we provided a command-line value for GITHUB_TOKEN.
Our app is preloaded with an opinion on the settings. However, we have the
flexibility to quickly override these values in production—should the need
arise—and critical security details are kept out of our source code.

Note

It's still the developer's responsibility to not add github.token to
src/main/resources/application.properties and then push it to a
publicly visible repository.

https://github.com/spring-projects

Adding server-side mobile support
with Spring Mobile
So, we have a nicely functioning app that fetches GitHub issues. What can we
do to take this example to the next level and explore Spring Boot? Considering
that many companies are seeing their primary Internet traffic come from mobile
consumers, what if we added mobile support to our app?

Spring Boot comes with out-of-the-box support for this. Just add the following
dependency to build.gradle:

compile("org.springframework.boot:spring-boot-starter-mobile")

This pulls in Spring Mobile (http://projects.spring.io/spring-mobile), which is
a library that easily switches between different views based on the browsing
client's user agent.

First, add this line to src/main/resources/application.properties:

spring.mobile.devicedelegatingviewresolver.enabled=true

By default, mobile support is switched off. This value activates Spring
Mobile's ability to switch views based on a user agent lookup.

Other settings are available, as listed in the following snippet:

spring.mobile.devicedelegatingviewresolver.normalPrefix=
spring.mobile.devicedelegatingviewresolver.normalSuffix=
spring.mobile.devicedelegatingviewresolver.mobilePrefix=mobile
/
spring.mobile.devicedelegatingviewresolver.mobileSuffix=
spring.mobile.devicedelegatingviewresolver.tabletPrefix=tablet
/
spring.mobile.devicedelegatingviewresolver.tabletSuffix=

Note

These are the defaults inside Spring Boot and are not in our app.

http://projects.spring.io/spring-mobile

These settings can be overridden either in our own application.properties
file or later on, as described previously.

Tip

While the tablet prefix is configured, we are going to focus solely on mobiles
in this chapter.

This is good. The default template, which is
src/main/resources/templates/index.html, is the same as before.
However, with the new mobile/ prefix, we need to create
src/main/resources/templates/mobile/index.html:

<html xmlns:th="http://www.thymeleaf.org">
<body>
 <p>Open GitHub Issues - Mobile</p>
</body>
</html>

There's not much here. For the moment, it just displays an alternate message,
which indicates that we hit the right view. We'll add to it later in this chapter.
Let's just see how it switches views properly; it's time to fire it up.

Are we ready to test things out? Well, not quite yet. Spring Mobile uses the
browser's user agent to make decisions based on the type of screen that is
viewing the site. While we can use a real mobile device to test things out, this
process can be quite cumbersome and time consuming. It's best to find a plugin
for our browser in order to switch the user agent settings automatically.

Ultimate Agent Sniffer (http://iblogbox.com/chrome/useragent/alert.php) is one
tool that lets you easily switch a browser tab to an iPad, iPhone, or just about
any other device you can think of. However, it's not the only one. You can find
one that suits your needs. The following screenshot shows you how to
configure the current browser tab on an iPhone 4:

http://iblogbox.com/chrome/useragent/alert.php

With the app running and our browser switched to mobile view, let's visit
http://localhost:8080.

We can see the mobile/index.html template with ease. Things are lined up
in order to create a truly mobile experience!

Creating a mobile frontend with
jQuery Mobile
Mobile apps seem to be taking over the world. If a website doesn't provide a
friendly mobile view, then people don't seem to like it. As we build web apps
all the time, it's critical to create a frontend UI that is usable. jQuery Mobile is
a handy toolkit that gets UIs up and running quickly.

Note

This is merely a quick introduction to jQuery Mobile. For something more
comprehensive, please read jQuery Mobile Web Development Essentials by
Raymond Camden and Andy Matthews.

In the previous chapter, we took a quick glance at Bower (http://bower.io),
which is a package manager for JavaScript libraries. We will use it to install
jQuery Mobile into our app. Assuming that we have already installed Bower,
let's proceed to define where Bower will put the packages by creating a
.bowerrc file in the root of our project. This file will signal Bower to put all
of our JavaScript modules into src/mainresourcespublic/, where Spring
Boot can automatically serve them up:

{
 "directory": "src/mainresourcespublic/"
}

In the previous chapter, we dropped the files into public/. In this case, as we
have a conventional Gradle project layout, the same target folder is at
src/mainresources. By the way, we have the same options (/META-
INFresources, resources, static, public). We simply have to place them
at src/mainresources.

Looks like we're ready to go! Execute the following steps:

$ bower init
[?] name: issue-manager
[?] version: 0.1.0

http://bower.io

[?] description: Learning Spring Boot - Issue Manager
[?] main file:
[?] what types of modules does this package expose? amd
[?] keywords:
[?] authors: Greg Turnquist <gturnquist@pivotal.io>
[?] license: ASL
[?] homepage:
http://blog.greglturnquist.com/category/learning-spring-boot
[?] set currently installed components as dependencies? No
[?] add commonly ignored files to ignore list? Yes
[?] would you like to mark this package as private, which
prevents it from being accidentally published to the registry?
Yes
...
[?] Looks good? Yes

With this setup, let's now install jQuery Mobile:

$ bower install jquerymobile-bower --save
bower jquerymobile-bower#* cached
git://github.com/jobrapido/jquerymobile-bower.git#1.4.2
bower jquerymobile-bower#* validate 1.4.2 against
git://github.com/jobrapido/jquerymobile-bower.git#*
bower jquery#~1.10.0 cached
git://github.com/jquery/jquery.git#1.10.2
bower jquery#~1.10.0 validate 1.10.2 against
git://github.com/jquery/jquery.git#~1.10.0
bower jquerymobile-bower#~1.4.2 install jquerymobile-
bower#1.4.2
bower jquery#~1.10.0 install
jquery#1.10.2

jquerymobile-bower#1.4.2 src/mainresourcespublic/jquerymobile-
bower
└── jquery#1.10.2

jquery#1.10.2 src/mainresourcespublic/jquery

We can see that it installed jQuery Mobile 1.4.2 along with jQuery 1.10.0. This
gives us all we need in order to craft a mobile web page.

Note

Again, this isn't a complete introduction to jQuery Mobile. A great resource for
learning how to drive various widgets is jQuery Mobile's showcase, which is
available at http://demos.jquerymobile.com/1.4.2.

To see our complete lineup of JavaScript modules for the frontend, check out
bower.json:

{
 "name": "issue-manager",
 "version": "0.1.0",
 "authors": [
 "Greg Turnquist <gturnquist@pivotal.io>"
],
 "description": "Learning Spring Boot - Issue Manager",
 "license": "ASL",
 "homepage":
"http://blog.greglturnquist.com/category/learning-spring-
boot",
 "private": true,
 "ignore": [
 "**/.*",
 "node_modules",
 "bower_components",
 "src/mainresourcespublic/",
 "test",
 "tests"
],
 "dependencies": {
 "jquerymobile-bower": "~1.4.2"
 }
}

It's time to put the pedal to the metal and load up jQuery Mobile's CSS and
JavaScript components. The following page is a very simple mobile layout that
we need to create at src/mainresourcestemplates/mobile/index.html:

<html xmlns:th="http://www.thymeleaf.org">
<head>
 <meta name="viewport" content="width=device-width,
initial-scale=1" >
 <link rel="stylesheet" href="jquerymobile-
bowercss/jquery.mobile-1.4.2.css" >
 <script src="jqueryjquery.js"></script>

http://demos.jquerymobile.com/1.4.2

 <script src="jquerymobile-bower/js/jquery.mobile-
1.4.2.js"></script>
</head>
<body>
 <div data-role="page" id="home">

 <div data-role="header" data-position="fixed">

<a>
 <h1>Issue Manager Mobile</h1>
 </div>

 <div data-role="content">
 <ul data-role="listview">
 <li th:each="issue : ${issues}">
 <a th:href="${issue.githubIssue.htmlUrl}"
target="_blank"
 th:text="${issue.githubIssue.title}">

 </div>

 </div>
</body>
</html>

Where do we begin? Okay, maybe it's a little bit bigger than you expected.
However, if you've done any major hacking on HTML, you might recognize
that this isn't as huge as other frontend systems. So, let's break it up:

<html xmlns:th="http://www.thymeleaf.org">

The first line is a giveaway that this is most certainly a Thymeleaf template. It
declares the th namespace, and we plan to take full advantage of this later in
the code:

<head>
 <meta name="viewport" content="width=device-width,
initial-scale=1" >
 <link rel="stylesheet" href="jquerymobile-
bowercss/jquery.mobile-1.4.2.css" >
 <script src="jqueryjquery.js"></script>
 <script src="jquerymobile-bower/js/jquery.mobile-

1.4.2.js"></script>
</head>

The header section starts off by creating some viewport settings. Essentially,
it's saying that the browser should use the full width of the device and that we
are completely zoomed in. Double-tapping the screen of your phone won't
cause it to zoom in any more. Next, we are loading up jQuery Mobile's CSS
style sheet. Then, we load up jQuery and jQuery Mobile JavaScript modules.

Now, let's look at the <body> part of the page:

<body>
 <div data-role="page" id="home">

 <div data-role="header" data-position="fixed">

<a>
 <h1>Issue Manager Mobile</h1>
 </div>

 <div data-role="content">
 <ul data-role="listview">
 <li th:each="issue : ${issues}">
 <a th:href="${issue.githubIssue.htmlUrl}"
target="_blank"
 th:text="${issue.githubIssue.title}">

 </div>

 </div>
</body>
</html>

jQuery Mobile is a declarative toolkit, which means that we only have to lay
out a set of key elements, and when the package finishes loading it will apply
mobile CSS styling. In this case, we have a top level <div data-
role="page" id="home"> tag, which defines a mobile "page." The term
"page" is wrapped in scary quotes because it isn't the same thing as an HTML
page. jQuery Mobile can support multiple pages and will only display the
current one.

Tip

As this is a single page app, we aren't going any deeper into multiple pages.
Instead, we'll focus on the other parts.

Inside the "home" page, there is a <div data-role="header" data-
position="fixed"> tag. This fragment defines what appears at the top.
Basically, a header can show up to three components on the device: the left, the
middle, and the right. In our case, there is an anchor tag and a header. This
automatically gets shifted to the left and middle spots upon rendering. The
anchor tag will be rendered as a button but with a home icon instead of any
text. The header tag takes the middle slot. For our example, there isn't anything
that can be put in the right slot.

After this, we get to the meat of the page: <div data-role="content">. This
is the content and is where most of the device's real estate will be put to work.
It's very analogous to the desktop version of things. The exception is that
instead of a table with rows, we are creating a list view of listed items. jQuery
Mobile will convert every line item into a button.

The anchor tag inside the list item has the URL. When you click on one of these
mobile buttons, it will open a new tab in our browser. The button's text shows
you the title as the text value.

This seems to do the trick! Using our desktop browser and Ultimate User Agent
Switcher has made it easy to build this mobile frontend. However, nothing is
complete without a check from a real mobile device. We'll see how to do this a
bit later.

Bundling up the application as a
runnable JAR
In the previous chapter, we learned how to run Groovy scripts with Spring
Boot's CLI tool. This empowered us to create runnable JAR files, which can
be deployed anywhere a JVM is installed. In this chapter, let's see how a Java-
based project can be bundled up as a JAR and deployed to a popular PaaS
provider.

Spring Boot comes with two handy plugins: spring-boot-maven-plugin and
spring-boot-gradle-plugin. As we are using Gradle in this book, the
project file from start.spring.io has spring-boot-gradle-plugin installed.
Earlier, we ran the app from the command line using ./gradlew bootRun. To
bundle up a JAR file, we merely need to do this:

$./gradlew clean build
:clean
:compileJava
:processResources
:classes
:jar
:bootRepackage
:assemble
:compileTestJava UP-TO-DATE
:processTestResources UP-TO-DATE
:testClasses UP-TO-DATE
:test UP-TO-DATE
:check UP-TO-DATE
:build

BUILD SUCCESSFUL

Total time: 7.168 secs

Tip

Did you get an error from Gradle? start.spring.io creates ApplicationTests,
which will fail due to the required github.token property. As we aren't

http://start.spring.io
http://start.spring.io

focused on writing automated tests, the simplest thing to do is to delete this
test class and try again. Pay heed to the fact that skipping unit tests is not
recommended for a real production app.

Spring Boot initially builds a traditional JAR file. This file contains the
compiled class files, all the public resource files such as our jQuery Mobile
code and HTML templates, and the pom file. We can find it at
build/libs/issue-manager-0.0.1-SNAPSHOT.jar.original. This JAR
file isn't runnable. In fact, it doesn't even have third-party dependencies; this is
by design. Such a JAR file can only be used to build a bigger artifact, such as a
WAR file.

In the spirit of runnable apps, Spring Boot's plugin takes another step. It creates
a new JAR file based on the original one and then adds third-party
dependencies and some support code in order to load the libraries. This can be
found at build/libs/issue-manager-0.0.1-SNAPSHOT.jar:

$ ls build/libs
issue-manager-0.0.1-SNAPSHOT.jar
issue-manager-0.0.1-SNAPSHOT.jar.original

We can fire up the JAR file now:

$ GITHUB_TOKEN=ccdbf257f052a594a0e7bd2823a69ae38a48ffb1 java -
jar build/libs/i...
 . ____ _
\ ___' _(_) _ _ \ \ \ \
(()__ | ' | '_| | ' \/ ' | \ \ \ \
\\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, |
=========|_|==============|___/=/_/_/_/
:: Spring Boot :: (v1.1.6.RELEASE)

2014-06-24 23:48:38.119 ... : Starting Application on retina
with PID 10542 (/...
2014-06-24 23:48:38.182 ... : Refreshing
org.springframework.boot.context.embe...
2014-06-24 23:48:38.775 ... : Overriding bean definition for
bean 'beanNameVie...
2014-06-24 23:48:39.278 ... : JSR-330 'javax.inject.Inject'

annotation found a...
2014-06-24 23:48:39.864 ... : Server initialized with port:
8080
2014-06-24 23:48:40.156 ... : Starting service Tomcat
2014-06-24 23:48:40.157 ... : Starting Servlet Engine: Apache
Tomcat/7.0.54
2014-06-24 23:48:40.288 ... : Initializing Spring embedded
WebApplicationContext
2014-06-24 23:48:40.289 ... : Root WebApplicationContext:
initialization compl...
2014-06-24 23:48:40.935 ... : Mapping servlet:
'dispatcherServlet' to [/]
2014-06-24 23:48:40.938 ... : Mapping filter:
'hiddenHttpMethodFilter' to: [/*]
2014-06-24 23:48:41.687 ... : Mapped URL path
[/**/favicon.ico] onto handler o...
2014-06-24 23:48:41.803 ... : Mapped "{[/],methods=[],params=
[],headers=[],con...
2014-06-24 23:48:41.805 ... : Mapped "{[/error],methods=
[],params=[],headers=[...
2014-06-24 23:48:41.805 ... : Mapped "{[/error],methods=
[],params=[],headers=[...
2014-06-24 23:48:41.831 ... : Mapped URL path [/**] onto
handler of type [clas...
2014-06-24 23:48:41.831 ... : Mapped URL path [/webjars/**]
onto handler of ty...
2014-06-24 23:48:42.042 ... : Registering beans for JMX
exposure on startup
2014-06-24 23:48:42.106 ... : Tomcat started on port(s):
8080/http
2014-06-24 23:48:42.107 ... : Started Application in 4.513
seconds (JVM runnin...

Now we can visit http://localhost:8080 and either view the desktop
version or the mobile version. If we check for the local IP address of our
machine, we can view it from a mobile device that's on the same Wi-Fi
network.

Note

If you are on a Mac or *nix system, it's possible to find the local IP address by
typing ifconfig | grep inet | grep -v 127.0.0.1.

Assuming that we get our computer and phone on the same network, we can
easily view the mobile version of the app.

We can see the list of tickets open on the GitHub repositories. If we click on
one, it will take us to GitHub, where we can easily view the details of the
issue.

Deploying to Cloud Foundry
One popular PaaS (Platform as a Service) provider is Cloud Foundry. You can
visit a public-facing version known as Pivotal Web Services at
https://run.pivotal.io to discover options. It's also possible for you to build and
set up your own local instance of Cloud Foundry using the open source tools
found at https://github.com/cloudfoundry, but we won't go into that. Assuming
that you have an account at run.pivotal.io, let's proceed by installing the Cloud
Foundry CLI tool.

If we visit https://github.com/cloudfoundry/cli, we can find installation
instructions for multiple platforms.

On a Mac system with Homebrew (http://brew.sh), all we have to do is type
the following:

$ brew tap pivotal/tap
$ brew install cloudfoundry-cli
==> Downloading
https://downloads.sf.net/project/machomebrew/Bottles/cloudfoun
dry-cli-6.1.1.mavericks.bottle.tar.gz
Already downloaded: LibraryCaches/Homebrew/cloudfoundry-cli-
6.1.1.mavericks.bottle.tar.gz
==> Pouring cloudfoundry-cli-6.1.1.mavericks.bottle.tar.gz

From here, we can log in to CF:

$ cf login
API endpoint: https://api.run.pivotal.io

Email> gturnquist@pivotal.io

Password>
Authenticating...
OK

API endpoint: https://api.run.pivotal.io (API version: 2.6.0)
User: gturnquist@pivotal.io
Org: FrameworksAndRuntimes
Space: development

https://run.pivotal.io
https://github.com/cloudfoundry
http://run.pivotal.io
https://github.com/cloudfoundry/cli
http://brew.sh

We are prompted for the API endpoint. In Pivotal's commercial instance of CF,
this will be https://api.run.pivotal.io. If you are running a different instance,
your API endpoint will be different. We must then use our e-mail/password
credentials. After getting in, we might have to pick our organization and space
for deployment. In all likelihood, your options will be different than what's
shown in the preceding console output.

At this point, we can deploy our app as follows:

$ cf push issue-manager-gturnquist -p target/issue-manager-
0.0.1-SNAPSHOT.jar -m 512M
Creating app issue-manager-gturnquist in org
FrameworksAndRuntimes / space development as
gturnquist@pivotal.io...
OK

Creating route issue-manager-gturnquist.cfapps.io...
OK

Binding issue-manager-gturnquist.cfapps.io to issue-manager-
gturnquist...
OK

Uploading issue-manager-gturnquist...
Uploading app files from: target/issue-manager-0.0.1-
SNAPSHOT.jar
Uploading 1.7M, 474 files
OK

Starting app issue-manager-gturnquist in org
FrameworksAndRuntimes / space development as
gturnquist@pivotal.io...
OK
-----> Downloaded app package (13M)
-----> Java Buildpack Version: v2.1.2 |
https://github.com/cloudfoundry/java-buildpack.git#074fd9a
-----> Downloading Open Jdk JRE 1.8.0_60 from
http://download.run.pivotal.io/openjdk/lucid/x86_64/openjdk-
1.8.0_60.tar.gz (1.4s)
 Expanding Open Jdk JRE to .java-buildpack/open_jdk_jre
(1.0s)
-----> Downloading Spring Auto Reconfiguration 0.8.9 from

https://api.run.pivotal.io

http://download.run.pivotal.io/auto-reconfiguration/auto-
reconfiguration-0.8.9.jar (0.0s)
-----> Uploading droplet (44M)

0 of 1 instances running, 1 starting
...
0 of 1 instances running, 1 down
0 of 1 instances running, 1 failing
FAILED
Start unsuccessful

NOTE: use 'cf logs issue-manager-gturnquist --recent' for more
information

First, let's examine the arguments used to push our app to CF:

The app name is issue-manager-gturnquist.
The artifact was supplied with -p target/issue-manager-0.0.1-
SNAPSHOT.jar.
The memory was increased to 512 MB. It has been observed that Spring
Boot apps need more than the minimum memory for web-based apps.
(Why? I'm not sure at the time of writing this.)

However, wait a second; cf says that the deployment failed! Why is that? Well,
it appears to be giving us a clue by showing us how to check the logfiles:

$ cf logs issue-manager-gturnquist --recent
...
2014-06-15T00:35:23.45-0500 [App/0] ... Could not resolve
placeholder 'github.token' in string value "${github.token}"
...

Ah ha! We don't have the github.token property configured. In all the other
examples of running this app, whether using ./gradlew bootRun or by
running the executable JAR file, we supplied that value. So what do we do in
this situation? Simple:

$ cf set-env issue-manager-gturnquist GITHUB_TOKEN
ccdbf257f052a594a0e7bd2823a69ae38a48ffb1
Setting env variable 'GITHUB_TOKEN' to
'ccdbf257f052a594a0e7bd2823a69ae38a48ffb1' for app issue-

manager-gturnquist...
OK
NOTE: Use 'cf push' to ensure your env variable changes take
effect

Okay, we've supplied an environmental variable that will be associated with
the cloud-hosted instance of this app. We can push updated JAR files all we
want. As long as we don't delete the remote app flat out, it's environmental
settings will stick:

$ cf push issue-manager-gturnquist -p target/issue-manager-
0.0.1-SNAPSHOT.jar
...
0 of 1 instances running, 1 starting
0 of 1 instances running, 1 starting
0 of 1 instances running, 1 starting
1 of 1 instances running

App started

Showing health and status for app issue-manager-gturnquist in
org FrameworksAndRuntimes / space development as
gturnquist@pivotal.io...
OK

requested state: started
instances: 1/1
usage: 512M x 1 instances
urls: issue-manager-gturnquist.cfapps.io

 state since cpu memory
disk
#0 running 2014-06-15 12:38:26 AM 0.0% 251.4M of 512M
108.3M of 1G

Note

We didn't supply the memory argument this time, because that information is
already stored with the app, just like GITHUB_TOKEN.

Now, we can visit http://issue-manager-gturnquist.cfapps.io.

http://issue-manager-gturnquist.cfapps.io

.

Perfect! This looks identical to what we saw earlier, except that we don't have
to visit port 8080, and it's available anywhere on the Internet.

If we visit the same site from our desktop browser, we can see the original
look and feel.

Adding production-ready support
So, is anything missing? Well, in the previous chapter, we added
@Grab("springboot-actuator") and @Grab("springboot-starter-
remote-shell"), and it created a slew of extra HTTP endpoints. While
Gradle isn't quite as concise as Groovy Grape, it's not that hard. Just add the
following dependencies to build.gradle:

compile("org.springframework.boot:springboot-starter-
actuator")
compile("org.springframework.boot:springboot-starter-remote-
shell")

These two Spring Boot starters activate Spring Boot Actuator as well the
CRaSH remote shell support.

In the previous chapter, we saw some detailed screenshots and explored how
to view these endpoints in our browser. All this is quite useful. However, one
thing that was mentioned was the possibility of writing a script in order to
consume the metrics. What would it take to start gathering metric data every
second and dump it into a CSV file that can be read with Excel? Let's start by
creating an independent script called metrics.groovy in the root folder of
our project:

package learningspringboot

@Grab("groovy-all")
import groovy.json.*

@EnableScheduling
class MetricsCollector {

 def url = "http://localhost:8080/metrics"
 def slurper = new JsonSlurper()
 def keys = slurper.parse(new URL(url)).keySet()
 .findAll{
 it.startsWith("counter")
 }
 def header = false;

 @Scheduled(fixedRate = 1000L)
 void run() {
 if (!header) {
 println(keys.join(','))
 header = true
 }

 def metrics = slurper.parse(new URL(url))

 println(keys.collect{metrics[it]}.join(','))
 }

}

So, what is buried in this gem of a script? Take a look:

@Grab("groovy-all") brings the vast wealth of Groovy on board (most
notably, JsonSlurper)
We initialize a connection to http://localhost:8080/metrics and
then fetch all keys that start with counter
@EnableScheduling turns on Spring's ability to have scheduled method
calls; run() is booked to run every 1000 ms
The first time run() executes, it will print out a header with each key's
name joined by commas (the CSV format)
Every other time run() is executed, it reconnects to
http://localhost:8080/metrics in order to download and parse the
data
Finally, using the list of keys, each data point is gathered and printed out,
spliced together by commas (CSV)

To use the script, we first need to fire up our new and improved Issue Manager
app with Spring Boot Actuator turned on:

$ GITHUB_TOKEN=ccdbf257f052a594a0e7bd2823a69ae38a48ffb1
./gradlew clean bootRun

With the Actuator up and running, we can now launch our metrics collection
script in another shell (in the same folder in which metrics.groovy lives):

$ spring run -q metrics.groovy | tee metrics.csv
counter.status.200.autoconfig,counter.status.200.beans,counter

.status.200.conf...
1,1,1,1,1,1,1,1,21,1,2,1
1,1,1,1,1,1,1,1,22,1,2,1
1,1,1,1,1,1,1,1,23,1,2,1
1,1,1,1,1,1,1,1,24,1,2,1
1,1,1,1,1,1,1,1,25,1,2,1
1,1,1,1,1,1,1,1,26,1,2,1
1,1,1,1,1,1,1,1,27,1,2,1
1,1,1,1,1,1,1,1,28,1,2,1
1,1,1,1,1,1,1,1,29,1,2,1
1,1,1,1,1,1,1,1,30,1,2,1
1,1,1,1,1,1,1,1,31,1,2,1
1,1,1,1,1,1,1,1,32,1,2,1
1,1,1,1,1,1,1,1,33,1,2,1
1,1,1,1,1,1,1,1,34,1,2,1
1,1,1,1,1,1,1,1,35,1,2,1
1,1,1,1,1,1,1,1,36,1,2,1

Assuming we have done that, we can now open metrics.csv using Excel.

Gee, that's no fun. The only metrics that are increasing appear to be our script

hitting /metrics. Well, duh! If only there was a way to automatically visit
other sites. Oh, but there is! Groovy is a powerful platform. Why don't we
write a script that can load test our website at the same time? Let's do this as
follows:

package learningspringboot

@Grab('org.codehaus.gpars:gpars:1.1.0')
import groovyx.gpars.GParsPool
import groovy.util.logging.*

@Slf4j
class LoadTester implements CommandLineRunner {

 void run(String[] args) {
 GParsPool.withPool(8) {
 def loadset = ["http://localhost:8080"]*100
 loadset.eachParallel { url ->
 def results = url.toURL().text
 log.info("Hit ${url}")
 }
 }
 }

}

So, what's all this? It's not that long, but it's packed with lots of features:

GPars (http://gpars.codehaus.org/) is the Groovy Parallel Systems
library. We're using it to perform parallel load testing
This script implements Spring Boot's CommandLineRunner interface, so
it will invoke the run() method
GParsPool.withPool(8) creates a parallel pool with eight workers
(because I happen to have an eight-core laptop)
Inside this block, we create an array with 100 instances of
http://localhost:8080, which is the root URL of issue manager
With this array of addresses, we ask GPars to iterate over every entry
using eachParallel { } in parallel
Inside each iteration, we convert url into java.net.URL, connect, and
fetch the text of the page
Instead of printing out the content, we are effectively just clicking on the

http://gpars.codehaus.org/

URL

This effectively hits the website 100 times, as fast as eight cores can go.
Looking at the following metrics screenshot, we can see that
counter.status.200.root is now up to 100.

With this setup, let's launch spring run metrics.groovy | tee
metrics.csv in one shell while we run spring run load_test.groovy in
another.

This screenshot nicely shows our metrics counter results, gathered in a
persistent spreadsheet:

Here, we can see that metrics.csv has counts of both
counters.status.200.metrics and counters.status.200.root.

For production-ready support, it's nice that Actuator provides us handy data
that we can consume. The scripts that we used in order to consume these
metrics might seem a bit crude. However, in the real world, we need tools that
let us quickly try something out before investing in bigger, more complex, and
often more expensive solutions.

If our manager wanted a quick read of the last 24 hours of data, we could
easily take metrics.groovy and adjust it to have a rolling time limit. We
could then serve up the content using a little Spring MVC. Cash in on Spring
MVC's WebSocket support, and we could have the screens update dynamically.
Program managers love eye candy, right?

There's no telling what requirements we'll get from system administrators and
managers. Spring Boot's easy-to-consume endpoints provide us with the tools
we need in our main application as well as the support tools we'll build in

order to manage things.

Summary
In this chapter, we used http://start.spring.io to create a bare bones project
with Gradle support. We plugged in Spring Social GitHub and used it to scan
multiple repositories for open issues. Then, we used Spring Mobile and
jQuery Mobile to create an alternative mobile frontend. We learned how to use
Spring Boot's über easy property support. We bundled it up into a runnable
JAR file and deployed it to Cloud Foundry. Finally, we added production-
ready support and did a little bit of load testing while gathering metrics.

In the next chapter, we will explore all the tools at our disposal that can be
used to debug and manage Spring Boot applications.

http://start.spring.io

Chapter 3. Debugging and
Managing Your App
"I have two hours today to build an app from scratch. @springboot to the rescue!"

--John Ferguson @fergusonjohnw

So you've decided to build an application using Spring Boot? Sooner or later,
something will go wrong. It does not matter how experienced we are. How
will Spring Boot help us figure out what went wrong and fix things? This
chapter introduces lots of tools to help us debug and manage "bootiful" apps (a
term coined by Josh Long).

In this chapter, we will learn the following topics:

Creating a JMS-based publisher/subscriber app using embedded
ActiveMQ
Viewing the autoconfiguration report and figuring out what was/wasn't
configured automatically
Overriding some of Boot's settings by properties and putting them in
alternate bean definitions in the code
Providing custom health checks (such as pinging ActiveMQ's broker)
Customizing the data shown at /info by plugging in things such as app
name and version
Creating custom metrics to track the number of messages published and
consumed
Changing the port, address, and path of management endpoints
Disabling HTTP-based management endpoints falling back to JMX
Connecting to JMX via JConsole and jmxterm
Adding the CRaSH remote shell and creating custom commands

Creating a JMS-based
publisher/subscriber app
To dig in and see how to debug an application, let's put together something
simple: an app that monitors incoming messages from the network. These
messages can indicate different levels of network degradation or recovery as
reported by various devices.

For a pretty basic JMS-based app that runs on top of ActiveMQ, we can use
the following build.gradle build file:

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath("org.springframework.boot:springboot-gradle-
plugin:1.1.6.RELEASE")
 }
}

apply plugin: 'java'
apply plugin: 'springboot'

jar {
 baseName = 'network-monitor'
 version = '0.0.1-SNAPSHOT'
}

sourceCompatibility = 1.8
targetCompatibility = 1.8

repositories {
 mavenCentral()
}

// tag::clean[]
clean {
 delete "activemq-data"
}

// end::clean[]

dependencies {
 compile("org.springframework.boot:springboot-starter")
 compile("org.springframework:spring-jms")
 compile("org.apache.activemq:activemq-broker")
}

task wrapper(type: Wrapper) {
 gradleVersion = '2.1'
}

Tip

This app uses Java 8, even though Spring Boot supports versions all the way
back to Java 6.

This app uses basic springboot-starter. It also pulls in spring-jms and
activemq-broker. In the past, we would have plugged in Joda-Time;
however, with Java 8, we have a new and improved API. With all this in
place, it's time to slug out some code:

package learningspringboot;

import java.io.Serializable;
import java.time.LocalDateTime;

public class Alarm implements Serializable {

 final private String hostname;
 final private LocalDateTime eventTime;
 final private Severity severity;

 public Alarm(String hostname, LocalDateTime eventTime,
Severity severity) {
 this.hostname = hostname;
 this.eventTime = eventTime;
 this.severity = severity;
 }

 public String getHostname() {
 return hostname;
 }

 public LocalDateTime getEventTime() {
 return eventTime;
 }

 public Severity getSeverity() {
 return severity;
 }

 public String toString() {
 return "Event[" + hostname + ":" + severity + "]";
 }
}

This domain object is at the heart of our network monitoring app. It represents
an alarm occurring somewhere in the network. The domain object contains the
hostname of the reporting device, the time the event occurred, and the severity
of the alarm. It's designed to be created only through a constructor call. This
makes the data immutable and forces the user to create the domain object in a
complete and stable state. It also implements the Serializable interface so
that we can serialize instances of these events and transmit them through a
message broker. Also, we have a custom toString method to print out its
contents.

Tip

While we will probably want the eventTime included in toString in real
life, it's been removed to make output easier to read further down in this
chapter.

The Alarm class contains a custom Severity type as follows:

package learningspringboot;

public enum Severity {

 UP, DEGRADED, JEOPARDY, DOWN
}

The severity of the alarm could have been something simpler like an integer.
However, it's often hard to remember what is good versus bad when you use
values such as one and five. Instead, we have defined a Java enum. This way,

the severity of the alarm is very clear and well defined.

In this chapter, we don't need to access a real network to demo Spring Boot's
features. Instead, let's create a simulator as follows:

package learningspringboot;

import java.time.LocalDateTime;
import java.util.Random;

import org.springframework.jms.core.JmsTemplate;
import org.springframework.scheduling.annotation.Scheduled;

public class NetworkEventSimulator {

 final private JmsTemplate jmsTemplate;
 final private String destination;

 public NetworkEventSimulator(JmsTemplate jmsTemplate,
String dest) {
 this.jmsTemplate = jmsTemplate;
 this.destination = dest;
 }

 @Scheduled(fixedRate = 1000L)
 public void simulateActivity() {

 Random random = new Random();

 String hostname;
 switch (random.nextInt(3)) {
 case 0: hostname = "router101"; break;
 case 1: hostname = "multiplex205"; break;
 default: hostname = "switch1143"; break;
 }

 Severity severity;
 switch (random.nextInt(4)) {
 case 0: severity = Severity.UP; break;
 case 1: severity = Severity.DEGRADED; break;
 case 2: severity = Severity.JEOPARDY; break;
 default: severity = Severity.DOWN; break;
 }
 Alarm event = new Alarm(hostname, LocalDateTime.now(),

 severity);
 jmsTemplate.convertAndSend(destination, event);
 }

}

The simulator expects to be supplied with both jmsTemplate and
destination instances.

In this case, we are using Spring's scheduling annotation,
@Scheduled(fixedRate = 1000L), to generate a new event every 1000
milliseconds. It uses Java's convenient Random utility class to rotate between
three hostnames and all four severities.

Tip

Why is the final case set to default? Java expects local variables to be
initialized. If we replace default with the case limit value, then Java has no
way of knowing that we covered all possible random values and would
consider the value potentially uninitialized. Hence, it will throw an error about
potentially not populating either hostname or severity.

We've coded an event simulator, that is, a producer. Now let's write an event
consumer:

package learningspringboot;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.stereotype.Component;

@Component
public class NetworkEventConsumer {

 private static final Logger log =

LoggerFactory.getLogger(NetworkEventConsumer.class);

 public void process(Alarm event) {
 log.info("Processing " + event);
 }
}

This is the entry point to our core business function: processing incoming
events. In a real system, the process method will update the state of related
devices, open tickets, and send alerts to regional operators. However, since
this a demo, it simply logs the receipt of the event.

Do you see any hint of JMS? There is none to be found. There isn't any Spring
except the @Component stereotype. This makes it possible for component
scanning to pick this class up and add it to the application context.

All this component has is a simple method, process, that expects to be fed an
Alarm. It merely logs the event and moves on. When we wire this into our app
a little further down, we'll have created a message-driven POJO.

Tip

So, what is the benefit of a message-driven POJO? Simple. With a POJO, we
can easily write unit tests for our consumer logic. In this case, we would be
testing the alarm correlation logic without the ceremony of containers,
expensive startup sequences, or any other unforeseeable circumstances. Since
the event correlation logic is decoupled from the message passing
configuration, we also have the option to move from JMS to AMQP without
having to alter the functionality.

The only thing left to do is wire up our app as follows:

package learningspringboot;

import javax.jms.ConnectionFactory;

import org.springframework.boot.SpringApplication;
import
org.springframework.boot.autoconfigure.EnableAutoConfiguration
;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.jms.core.JmsTemplate;
import
org.springframework.jms.listener.SimpleMessageListenerContaine
r;

import
org.springframework.jms.listener.adapter.MessageListenerAdapte
r;
import
org.springframework.scheduling.annotation.EnableScheduling;

@Configuration
@ComponentScan
@EnableScheduling
@EnableAutoConfiguration
public class Application {

 private static final String MAILBOX = "events";

 @Bean
 MessageListenerAdapter adapter(NetworkEventConsumer
consumer) {
 MessageListenerAdapter adapter =
 new MessageListenerAdapter(consumer);
 adapter.setDefaultListenerMethod("process");
 return adapter;
 }

 @Bean
 SimpleMessageListenerContainer
container(MessageListenerAdapter
 adapter, ConnectionFactory factory) {
 SimpleMessageListenerContainer container =
 new SimpleMessageListenerContainer();
 container.setMessageListener(adapter);
 container.setConnectionFactory(factory);
 container.setDestinationName(MAILBOX);
 return container;
 }

 @Bean
 NetworkEventSimulator simulator(JmsTemplate jmsTemplate) {
 return new NetworkEventSimulator(jmsTemplate,
MAILBOX);
 }

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

Let's break this down:

@Configuration: This looks for bean definitions inside the preceding
class
@ComponentScan: This looks for components, controllers, and other
types in the preceding class's package to add to the application context
@EnableScheduling: This turns on the simulator's @Scheduled event
generator
@EnableAutoConfiguration: This turns on Spring Boot's
autoconfiguration logic

The class contains the definitive name of our JMS destination, events.

There is a MessageListenerAdapter class. This convenient class lets us
wrap any POJO so we can push events to it. In this case, we are wrapping
NetworkEventConsumer and flagging its process method as the destination of
JMS messages.

The SimpleMessageListenerContainer class is a super useful way to
register the MessageListenerAdapter instance with the broker via the
ConnectionFactory property. It also hooks things up to the events
destination.

We can also see NetworkEventSimulator gets wired up by feeding it
JmsTemplate and MAILBOX.

In addition to all this, we need a slight tweak to build.gradle. Sometimes,
ActiveMQ can leave behind persistent data. By default, it ends up in
activemq-data in the same folder from which the app runs. In order to have a
clean slate for each start, we need to add this extra functionality when the
clean task is invoked:

clean {
 delete "activemq-data"
}

Let's fire things up and see what happens!

$./gradlew clean bootRun

...
 . ____ _
\ ___' _(_) _ _ \ \ \ \
(()__ | ' | '_| | ' \/ ' | \ \ \ \
\\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, |
=========|_|==============|___/=/_/_/_/
:: Spring Boot :: (v1.1.6.RELEASE)

2014-06-29 00:06:02.059 ... : Starting Application on retina
with PID 16991 (/...
2014-06-29 00:06:02.113 ... : Refreshing
org.springframework.context.annotatio...
2014-06-29 00:06:02.655 ... : Bean
'org.springframework.scheduling.annotation....
2014-06-29 00:06:02.951 ... : Using Persistence Adapter:
MemoryPersistenceAdap...
2014-06-29 00:06:02.953 ... : JMX consoles can connect to
service:jmx:rmi:///j...
2014-06-29 00:06:03.095 ... : Apache ActiveMQ 5.9.1
(localhost, ID:retina-5395...
2014-06-29 00:06:03.099 ... : Apache ActiveMQ 5.9.1
(localhost, ID:retina-5395...
2014-06-29 00:06:03.099 ... : For help or more information
please see: http://...
2014-06-29 00:06:03.128 ... : Connector vm://localhost started
2014-06-29 00:06:03.314 ... : Registering beans for JMX
exposure on startup
2014-06-29 00:06:03.329 ... : Starting beans in phase
2147483647
2014-06-29 00:06:03.337 ... : Started Application in 1.638
seconds (JVM runnin...
2014-06-29 00:06:03.425 ... : Processing
Event[switch1143:DEGRADED]
2014-06-29 00:06:04.342 ... : Processing
Event[multiplex205:JEOPARDY]
2014-06-29 00:06:05.345 ... : Processing
Event[multiplex205:JEOPARDY]
2014-06-29 00:06:06.343 ... : Processing Event[switch1143:UP]
2014-06-29 00:06:07.343 ... : Processing
Event[router101:DEGRADED]
2014-06-29 00:06:08.345 ... : Processing
Event[switch1143:DEGRADED]
2014-06-29 00:06:09.344 ... : Processing

Event[router101:JEOPARDY]

So, what's happening? It might be slightly trimmed out of this text, but
Connector vm://localhost started indicates that an embedded
ActiveMQ broker was launched. It is listening to the virtual address
vm://localhost. How did this happen? After all, we didn't code anything that
involved setting up a broker.

Spring Boot kindly stepped in, thanks to @EnableAutoConfiguration. It saw
that we had spring-jms and activemq-broker as dependencies. Both of
these things caused Spring Boot to automatically configure and launch an
embedded message broker.

Spring Boot also automatically created JmsTemplate and added this to the
application context. This is how we were able to publish messages from
NetworkEventSimulator. Also, we can see a random slew of events being
processed in the preceding console output.

Sure, it's nice and handy to have what happened laid out in a book. However,
what about the next app that we'll build? How are we going to deduce what
Boot is doing? What if we use completely different modules? In the next few
sections, we'll see exactly what Spring Boot does and why it does it. Armed
with such knowledge, we'll be able to figure out what Boot will do in the
future.

To get a handle on things, let's first see how Spring Boot autoconfigured
JmsTemplate. Here is a snippet of code from Spring Boot's JMS autodetection
capabilities:

...
package org.springframework.boot.autoconfigure.jms;
...
/**
 {@link EnableAutoConfiguration Autoconfiguration} for Spring
JMS.

 @author Greg Turnquist
/
@Configuration

@ConditionalOnClass(JmsTemplate.class)
@ConditionalOnBean(ConnectionFactory.class)
@EnableConfigurationProperties(JmsProperties.class)
@AutoConfigureAfter({ HornetQAutoConfiguration.class,
ActiveMQAutoConfiguration.class })
public class JmsAutoConfiguration {

 @Autowired
 private JmsProperties properties;

 @Autowired
 private ConnectionFactory connectionFactory;

...

Tip

This code isn't part of this book despite having my name on it. Instead, it's a
feature I contributed to Spring Boot back in September of 2013 during the
SpringOne conference.

Let's explore what this snippet of Spring Boot contains, which is as follows:

@Configuration: This class contains beans to be added to the
application context
@ConditionOnClass: This class won't activate unless it detects
JmsTemplate on the classpath (a tell-tale sign of spring-jms)
@ConditionalOnBean: This class won't activate unless a bean exists of
type javax.jms.ConnectionFactory
@EnableConfigurationProperties: This class looks at
JmsProperties for a set of property values
@AutoConfigureAfter: Only do this one after checking HornetQ and
ActiveMQ autoconfiguration settings to avoid a configuration race
condition

We can also see the autowired JmsProperties and ConnectionFactory.
Given all this, let's examine a core piece of this autoconfiguration class:

@Bean
@ConditionalOnMissingBean
public JmsTemplate jmsTemplate() {

 JmsTemplate jmsTemplate = new
JmsTemplate(this.connectionFactory);

jmsTemplate.setPubSubDomain(this.properties.isPubSubDomain());
 return jmsTemplate;
}

This is a bean definition and runs only if there isn't already a JmsTemplate
bean. This means that if we define our own bean, it won't kick in. This is how
we can override Boot's opinion on how to configure this bean. It creates
JmsTemplate using the autowired connection factory. Then it sets
pubSubDomain based on the injected properties. Finally, it returns the
template, loading it into the application context. That makes this bean available
for us to wire into our application as shown earlier.

Tip

Do I have to read Boot's source code every time I want to autoconfigure
something? Not really. The reference docs are quite thorough. Also, Boot
makes some pretty good decisions that shouldn't surprise you. Appendix A of
Boot's online reference manual
(http://docs.spring.io/springboot/docs/1.1.6.RELEASE/reference/htmlsingle/#common-
application-properties) contains an extensive listing of properties you can
override, such as spring.jms.* and spring.activemq.*. However, the
docs can't be guaranteed to always be right, nor can they necessarily document
every single feature. Some third-party libraries are creating their own
autoconfiguration behaviors as well, with their own properties. See
https://github.com/codecentric/springboot-starter-batch-web for an example.
Understanding how Spring Boot does its autoconfiguration is powerful
knowledge, not only for using it, but also for potentially writing your own
autoconfiguration behaviors in the future.

Now that we've seen how Boot can autoconfigure beans, let's explore the other
tools Boot comes with.

http://docs.spring.io/spring-boot/docs/1.1.6.RELEASE/reference/htmlsingle/#common-application-properties
https://github.com/codecentric/spring-boot-starter-batch-web

Using Spring Boot's auto-
configuration report
Spring Boot provides a very useful report to tip you off about what it's doing.
There are different ways to turn on the report, shown as follows:

Inside your IDE, add --debug as a program argument. Then run it.
From the command line, execute ./gradlew clean build && java -
jar build/libs/network-monitor-0.0.1-SNAPSHOT.jar --debug.

Tip

If you try to put --debug into the gradlew command, it will signal gradlew
itself to generate a debug trail and not get passed on to the app.

The results should look something like this:

=========================
AUTO-CONFIGURATION REPORT
=========================

Positive matches:

 ActiveMQAutoConfiguration
 - @ConditionalOnClass classes found:
javax.jms.ConnectionFactory,org.apache.activemq.ActiveMQConnec
tionFactory (OnClassCondition)
 - @ConditionalOnMissingBean (types:
javax.jms.ConnectionFactory; SearchStrategy: all) found no
beans (OnBeanCondition)

 ActiveMQAutoConfiguration.EmbeddedBroker
 - Embedded ActiveMQ broker detected - brokerUrl
'vm://localhost?broker.persistent=false'
(ActiveMQAutoConfiguration.EmbeddedBrokerCondition)
 - @ConditionalOnClass classes found:
org.apache.activemq.transport.vm.VMTransportFactory
(OnClassCondition)

 JmsAutoConfiguration
 - @ConditionalOnClass classes found:
org.springframework.jms.core.JmsTemplate (OnClassCondition)
 - @ConditionalOnBean (types:
javax.jms.ConnectionFactory; SearchStrategy: all) found the
following [jmsConnectionFactory] (OnBeanCondition)

 JmsAutoConfiguration#jmsTemplate
 - @ConditionalOnMissingBean (types:
org.springframework.jms.core.JmsTemplate; SearchStrategy: all)
found no beans (OnBeanCondition)
...

For space reasons, this snippet only shows a subset of positive matches. It is
listing the auto-configuration code Spring Boot turned on. If you scroll further
down when you execute this command, you'll also see a very long list of
negative matches, which are things that Spring Boot did not activate.

From this preceding list, we can see what auto-configuration classes were
activated:

Auto-configuration class Quick description

ActiveMQAutoConfiguration This is an enclosing auto-configuration for ActiveMQ

ActiveMQAutoConfiguration.EmbeddedBroker This creates an embedded ActiveMQ broker

JmsAutoConfiguration This is an enclosing auto-configuration for JMS

JmsAutoConfiguration#jmsTemplate This creates JmsTemplate

Tip

If you run this yourself, you'll find some other auto-configuration behaviors that
were activated. However, since they are unrelated to JMS and ActiveMQ,
they've been left out.

Auto-configuring ActiveMQ
Let's dive into the section of the report concerning
ActiveMQAutoConfiguration:

@ConditionalOnClass classes found:
javax.jms.ConnectionFactory,org.apache.activemq.ActiveMQConnec
tionFactory (OnClassCondition)

This piece of the preceding report shows that ActiveMQAutoConfiguration
and all its inner auto-configuration classes will be evaluated because it
discovered ConnectionFactory and ActiveMQConnectionFactory on the
classpath. Let's read some more:

@ConditionalOnMissingBean (types: javax.jms.ConnectionFactory;
SearchStrategy: all) found no beans (OnBeanCondition)

This bit of the report shows that Spring Boot also requires that no beans of
type ConnectionFactory exist. This condition says that if we create a bean of
this type, the entire ActiveMQAutoConfiguration will switch off.

Tip

If we configure our own connection factory manually, there is little that Boot
has to offer in automation and it's frankly too hard to line up property settings.

After ActiveMQAutoConfiguration, the report lists
ActiveMQAutoConfiguration.EmbeddedBroker. The nomenclature of
<name>.<name> says this is an inner class. Let's continue reading the report:

Embedded ActiveMQ broker detected - brokerUrl 'vm://localhost?
broker.persistent=false'
(ActiveMQAutoConfiguration.EmbeddedBrokerCondition)

This is a custom condition. Most of the ones provided by Spring Boot are
annotations (one exception is SpEL support). The message clearly says that it
looked at the default URL (vm://localhost) and deduced this as the basis of
an embedded broker. Let's look at some more of this report:

@ConditionalOnClass classes found:
org.apache.activemq.transport.vm.VMTransportFactory
(OnClassCondition)

It also sees VMTransportFactory on the classpath. This class is only found in
activemq-broker, indicating that we not only have the ActiveMQ client
library, but also everything needed to run an embedded broker.

Making a change and debugging the results
What does the report look like if we switch our build file from activemq-
broker to activemq-client and rerun everything?

It fails with the following message: No qualifying bean of type
[javax.jms.ConnectionFactory] found for dependency. By itself, this
might seem a bit confusing. After all, we were expecting Spring Boot to put
together our connection factory. So, run the report again.

Earlier, we were only looking at positive matches. This time,
ActiveMQAutoConfiguration has some results in negative matches:

ActiveMQAutoConfiguration.EmbeddedBroker
 - Embedded ActiveMQ broker detected - brokerUrl
'vm://localhost?broker.persistent=false'
(ActiveMQAutoConfiguration.EmbeddedBrokerCondition)
 - required @ConditionalOnClass classes not found:
org.apache.activemq.transport.vm.VMTransportFactory
(OnClassCondition)

ActiveMQAutoConfiguration.NetworkBroker
 - Network ActiveMQ broker not detected - brokerUrl
'vm://localhost?broker.persistent=false'
(ActiveMQAutoConfiguration.NonEmbeddedBrokerCondition)

Seeing both EmbeddedBroker and NetworkBroker listed indicates that Spring
Boot could neither find an embedded broker nor a network broker. Why?

The EmbeddedBroker condition succeeds at detecting a URL starting with
vm://, but fails because VMTransportFactory is no longer on the classpath.
This is expected since we removed activemq-broker from the build.

Strangely, NetworkBroker fails as well. The Network ActiveMQ broker
not detected - brokerUrl 'vm://localhost… message indicates that it
didn't detect a network broker. Given that vm:// is the protocol for an
embedded broker, it is apparent that this address is not suitable to use for
connecting to a standalone broker. If we visit Boot's docs, we can find the
ActiveMQ section (http://docs.spring.io/spring-

http://docs.spring.io/spring-boot/docs/1.1.6.RELEASE/reference/htmlsingle/#boot-features-activemq

boot/docs/1.1.6.RELEASE/reference/htmlsingle/#boot-features-activemq).
From here, we can discover a hyperlink behind ActiveMQProperties that
takes us to the source of spring.activemq properties. Here, we see that
spring.activemq.inMemory defaults to true and requires an override to
switch to using a network broker.

Tip

Why does Boot require an override instead of switching to network broker
mode? Because it can't discern our intent. There's simply not enough
information. We either made a typo in the build file by not pulling in
activemq-broker or we need to explicitly tell it to switch to network mode.
Either way, we need to clarify our intent to Boot.

Let's add the following line to
src/main/resources/application.properties:

spring.activemq.inMemory=false

This says not to use in-memory settings. Given this, Spring Boot now has
enough information to create a connection factory. So, let's rerun our app once
more.

It fails again, but for a different reason: Could not connect to broker
URL: tcp://localhost:61616. This sounds more reasonable because we
never stood up a broker.

We now see this in positive matches in the auto-configuration report:

ActiveMQAutoConfiguration.NetworkBroker
 - Network ActiveMQ broker detected - brokerUrl
'tcp://localhost:61616'
(ActiveMQAutoConfiguration.NonEmbeddedBrokerCondition)

It recognizes that tcp:// is the protocol for a remote and standalone broker on
the default port. Additionally,
ActiveMQAutoConfiguration.EmbeddedBroker is in negative matches, as it
should be. It indicates that the only thing needed is to configure an ActiveMQ
server.

We can either download ActiveMQ or install it through any popular package
manager. On a Mac with Homebrew, we only have to run the following
commands:

$ brew install activemq
$ activemq start

Run the app and it should now start cranking out network events such as we
saw at the beginning of this chapter. (By the way, don't forget to shut down your
broker by typing activemq stop when you're done.)

Whenever we see one of these auto-configuration classes, we can easily
Google the name of the class and it will lead us to the source code. Or we can
open it up inside our IDE and ask it to fetch the source. Given all the tools
we've looked at so far, we have the building blocks to reach beyond the
reference docs and see how Spring Boot is configuring things.

Overriding Boot with alternate
beans or properties
This section assumes that you have reverted your build file back to using
activemq-broker and removed spring.activemq.inMemory=false, hence
going back to the in-memory embedded ActiveMQ broker.

In the previous section, we saw how Spring Boot inserts its opinion when it
sees spring-jms on the path. It distinctly creates JmsTemplate. But , what if
we don't like its opinion?

The jmsTemplate method inside JmsAutoConfiguration was flagged with
@ConditionalOnMissingBean. This means that if we create our own bean
definition for JmsTemplate, Spring Boot will back off and instead let us plug
in our own bean.

JMS supports two types of message destinations: queues and topics. By
default, JmsTemplate is configured to talk to queues. To reconfigure it to talk
to topics requires a change in the bean definition. Let's add our own bean to
Application.java:

@Bean
JmsTemplate jmsTemplate(ConnectionFactory factory) {
 JmsTemplate jmsTemplate = new JmsTemplate(factory);
 jmsTemplate.setPubSubDomain(true);
 return jmsTemplate;
}

Let's walk through this code:

The @Bean annotation indicates that this is a bean definition.
A ConnectionFactory instance is required. If one doesn't exist, the app
will fail quickly.
A JmsTemplate instance is created and its pubSubDomain property is set
to true.
The object is returned.

If the publisher is talking to topics with this instance of JmsTemplate, the
consumer must be configured as the same. Check out the following update to
SimpleMessageListenerContainer:

@Bean
SimpleMessageListenerContainer
container(MessageListenerAdapter adapter,
 ConnectionFactory factory) {
 SimpleMessageListenerContainer container =
 new SimpleMessageListenerContainer();
 container.setMessageListener(adapter);
 container.setConnectionFactory(factory);
 container.setPubSubDomain(true);
 container.setDestinationName(MAILBOX);
 return container;
}

The preceding code is the same as seen earlier except that
container.setPubSubDomain(true) has been added to make it listen to
topics.

Tip

What is the significance of queues versus topics? Queues are one-to-one.
Topics are one-to-many. In either paradigm, multiple publishers can send
messages to multiple consumers through a single destination. The difference is
that with a queue, only one of the consumers will get any given message. With
a topic, all the consumers will get a copy (barring any message selectors).

It's really handy to be able to swap out Boot's JmsTemplate class for our own.
Doesn't that seem a bit heavyweight just to override a single property?
Thankfully, lots of Boot's auto-configurations are loaded with property
settings. This gives us more fine-grained control over things.

First, we can throw out that custom JmsTemplate bean definition. Then, we
only need to create src/main/resources/application.properties and
add this:

spring.jms.pubSubDomain=true

This property will set Boot's JmsTemplate.pubSubDomain field to true.

We still have to alter our SimpleMessageListenerContainer configuration
to follow suit. We can go in and hardcode the container's pubSubDomain
property, but doesn't that sound a bit inflexible? Wouldn't it be better if we
hooked into Spring Boot's property settings directly? This way, if the property
is updated anywhere, either in application.properties or via the other
options mentioned previously in this book after our code is released, our code
will keep up with the changes.

To do this, we need our own copy of JmsProperties injected into
Application.java:

@Autowired
private JmsProperties properties;

Tip

Remember, JmsProperties is the source of properties that were mentioned
earlier.

What does this code mean? Spring's @Autowired annotation will ensure that
we get a copy of the same JmsProperties bean created by Spring Boot.

With this in place, we can update our bean definition of
SimpleMessageListenerContainer as follows:

@Bean
SimpleMessageListenerContainer
container(MessageListenerAdapter consumer,
 ConnectionFactory
factory) {
 SimpleMessageListenerContainer container =
 new SimpleMessageListenerContainer();
 container.setMessageListener(consumer);
 container.setConnectionFactory(factory);

container.setPubSubDomain(this.properties.isPubSubDomain());
 container.setDestinationName(MAILBOX);
 return container;
}

The
container.setPubSubDomain(this.properties.isPubSubDomain())

statement sets the container's pubSubDomain field based on the property. In
Chapter 2, Quick Start with Java, we briefly mentioned Spring Boot's various
options to configure properties. To summarize:

Default values can be supplied directly as
@Value("${propertyName:defaultValue}")

The @Value annotation defaults can be overridden in an
application.properties file, which gets bundled with the app in a
JAR file
Bundled properties can be overridden in an auxiliary
application.properties file adjacent to the deployed JAR file
Auxiliary properties can be overridden with environment variables,
either from the command line, .bashrc, or Windows environment settings
In a cloud environment, environment variables can be supplied by other
means we won't delve into

Our app is now configured to use topics. If we run it from our IDE, we can
expect to see something like this:

 . ____ _
\ ___' _(_) _ _ \ \ \ \
(()__ | ' | '_| | ' \/ ' | \ \ \ \
\\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, |
=========|_|==============|___/=/_/_/_/
:: Spring Boot :: (v1.1.6.RELEASE)

2014-07-05 01:28:10.651 ... : Starting Application on retina
with PID 30378 (/...
2014-07-05 01:28:10.695 ... : Refreshing
org.springframework.context.annotatio...
2014-07-05 01:28:11.206 ... : Bean
'org.springframework.scheduling.annotation....
2014-07-05 01:28:11.508 ... : Using Persistence Adapter:
MemoryPersistenceAdap...
2014-07-05 01:28:11.512 ... : JMX consoles can connect to
service:jmx:rmi:///j...
2014-07-05 01:28:11.656 ... : Apache ActiveMQ 5.9.1

(localhost, ID:retina-5625...
2014-07-05 01:28:11.661 ... : Apache ActiveMQ 5.9.1
(localhost, ID:retina-5625...
2014-07-05 01:28:11.661 ... : For help or more information
please see: http://...
2014-07-05 01:28:11.697 ... : Connector vm://localhost started
2014-07-05 01:28:11.850 ... : Registering beans for JMX
exposure on startup
2014-07-05 01:28:11.867 ... : Starting beans in phase
2147483647
2014-07-05 01:28:11.875 ... : Started Application in 1.564
seconds (JVM runnin...
2014-07-05 01:28:11.950 ... : Processing
Event[switch1143:DOWN]
2014-07-05 01:28:12.881 ... : Processing Event[switch1143:UP]
2014-07-05 01:28:13.883 ... : Processing
Event[switch1143:DOWN]
2014-07-05 01:28:14.882 ... : Processing Event[switch1143:UP]
2014-07-05 01:28:15.883 ... : Processing Event[router101:DOWN]
2014-07-05 01:28:16.880 ... : Processing Event[switch1143:UP]
2014-07-05 01:28:17.880 ... : Processing
Event[switch1143:JEOPARDY]

Note

We are just exploring a single JMS property. For a guide to common
application properties provided by Spring Boot, read
http://docs.spring.io/spring-
boot/docs/1.1.6.RELEASE/reference/htmlsingle/#common-application-
properties.

http://docs.spring.io/spring-boot/docs/1.1.6.RELEASE/reference/htmlsingle/#common-application-properties

Writing a custom health check to
ping ActiveMQ
We've gotten a glimpse of how Spring Boot does auto-configuration, and we've
also seen how to tap Boot's property support. In previous chapters, we saw
how Spring Boot comes with additional ops-ready support via its Actuator
module. Let's turn that on and customize the health indicator to also ping the
ActiveMQ broker.

First, we need to add key dependencies to build.gradle to make these HTTP
management endpoints visible:

compile("org.springframework.boot:springboot-actuator")
compile("org.springframework.boot:springboot-starter-web")

What do we have here? The springboot-actuator module is the key module
to add these various management services. But these endpoints also require
Spring MVC. Since the app we've developed so far has not involved any client
layer, we also need to add the springboot-starter-web module.

Note

We've been using springboot-starter-thymeleaf in the previous chapters.
The data served up from Actuator doesn't actually use views, but instead
returns data in a JSON structure.

If we launch the app with ./gradlew bootRun and visit
http://localhost:8080/health, we will see the following output:

This shows a simple UP message. What does this indicate? Well, Spring Boot
has ApplicationHealthIndicator, which is hardcoded to return UP. It
basically indicates whether or not the app is running.

Something more meaningful for our app will be to ping the ActiveMQ message
broker. How can we do that? Look at the following code:

package learningspringboot;

import javax.jms.ConnectionFactory;
import javax.jms.JMSException;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.actuate.health.Health;
import
org.springframework.boot.actuate.health.HealthIndicator;
import org.springframework.boot.actuate.health.Status;
import org.springframework.stereotype.Component;

@Component
public class ActiveMQHealth implements HealthIndicator {

 private ConnectionFactory factory;

 @Autowired
 public ActiveMQHealth(ConnectionFactory factory) {

 this.factory = factory;
 }

 @Override
 public Health health() {
 try {
 factory.createConnection();
 } catch (JMSException e) {
 return new Health.Builder()
 .down(e)
 .build();
 }
 return new Health.Builder()
 .status(Status.UP + ": Successfully connected
to the broker")
 .build();
 }
}

Let's walk through the bits and pieces of the preceding code snippet:

The @Component annotation flags this class to be picked up by
@ComponentScan.
It implements Actuator's HealthIndicator interface so it can be
scooped up automatically.
It gets ConnectionFactory autowired by constructor.
Inside health(), it tries to create a connection. If it fails, that is, throws
an exception, a DOWN status is returned along with the exception.
If the connection is created, it returns UP with a more detailed message
about reaching the broker.

Note

The ConnectionFactory instance is wired via constructor injection. For
more information, read
http://docs.spring.io/spring/docs/4.0.7.RELEASE/springframework-
reference/htmlsingle/#beans-dependency-resolution.

Launch the app and visit http://localhost:8080/health once again, and
we will get the following output:

http://docs.spring.io/spring/docs/4.0.7.RELEASE/spring-framework-reference/htmlsingle/#beans-dependency-resolution

Here, we can see our new health status message, clearly indicating that it was
able to hit the broker.

This idea is pretty handy. In this chapter, we have already seen how easy it is
to either fetch key beans or look up property values. This makes it easy to
write a health indicator that can tap database credentials or perhaps a REST
service URL to test that critical components are up.

To top things off, Spring Boot Actuator comes with several built-in health
checks based on the current environment. For example, it will do extra checks
against MongoDB, Redis, RabbitMQ, Solr, and any DataSource-based DB to
check whether they're up and include them in the /health management
endpoint.

Adding customized app data to /info
If you added Spring Boot's Actuator module to a given project, another
endpoint is available: /info. This endpoint actually returns the empty JSON
document { }. This isn't very useful. Never fear because Spring Boot makes it
super simple to embed whatever you want.

Any property that starts with info. will be scooped up and served from this
endpoint. Let's add the following code to
src/main/resources/application.properties:

info.app.name=Network Manager
info.app.project=Learning Spring Boot
info.app.chapter=3
info.app.manuscript.raw=asciidoctor
info.app.manuscript.formatted=LibreOffice
info.app.manuscript.converter=https://github.com/gregturn/asci
idoctor-packt

Tip

There is no fixed structure to this. You only have to start with info.

Interesting material to serve up, but we can do better. Have you ever deployed
a system only to have a customer call you up and complain, "The app is
broken!" Through a handful of questions, you discover the issue is something
you already fixed and rolled out. After a few hours of painstaking research,
you figure out that they are using the previous version! What would have been
handy is precise version information. What would be more precise than having
access to a commit ID? This way, we can ask our customer over the phone
exactly what version they have and quickly rule out issues.

What will be handy is embedding information from the build process into
application.properties. To do so, we must add the following fragment to
build.gradle:

import org.apache.tools.ant.filters.*

afterEvaluate {

 configure(allProcessResourcesTasks()) {
 filter(ReplaceTokens,
 tokens: [baseName: project.jar.baseName,
 version: project.jar.version,
 gradleVersion:
project.gradle.gradleVersion]
)
 }
}

def allProcessResourcesTasks() {
 sourceSets*.processResourcesTaskName.collect {
 tasks[it]
 }
}

This fragment of Gradle code will find various property files. Then it will try
to replace any existing tokens found in the form of @some-property@ with the
list of items in tokens.

Therefore, we can add the following properties to application.properties
to grant us extra information about the build:

info.build.artifact=@baseName@
info.build.version=@version@
info.build.gradleVersion=@gradleVersion@

These properties will be replaced by the ones defined in tokens, as shown
earlier. It will provide us with the following items in the browser:

The name of the artifact
The version number of the artifact
The version of gradle used to build the app

On top of that, if we are using Git (like the source code of this book), we can
use the gradle-git plugin (https://github.com/ajoberstar/gradle-git) to fetch
commit details and use it to produce git.properties. Whenever Spring Boot
Actuator spots such a file, it automatically serves up its properties as
additional information underneath /info.

For starters, we need to add this fragment to build.gradle as well:

https://github.com/ajoberstar/gradle-git

import org.ajoberstar.grgit.*

configure(rootProject) {
 task gitMetadata << {
 ext {
 repo = Grgit.open(project.file('../..'))
 branch = repo.branch?.current?.name
 commitId = repo.head().abbreviatedId
 commitTime = new Date(new
Integer(repo.head().time)
 .longValue()*1000L).format("yyyy-MM-dd
HH:mm")
 }
 }

 apply from: 'writeGitPropertiesFile.gradle'
}

What does the preceding fragment of Gradle configuration do?

The configure method applies extra configuration steps to
rootProject, which represents the entire project. (It's possible to apply
subsections of a project, but we aren't diving into that.)
It declares a task named gitMetadata, which outputs a handful of
properties.
To fetch Git properties, the Grgit module first opens the Git repository
using Grgit.open(project.file('../..')). This command looks up
two parent folders because that is the structure of this book's manuscript.
For a standard project, you should probably use
Grgit.open(project.file('.')).
Then it looks up the branch's current name, the head commit's abbreviated
ID (the first seven characters of the full ID), and the head commit's time
(formatted to be human readable).
Finally, it imports another Gradle build file,
writeGitPropertiesFile.gradle, put in the same folder as
build.gradle.

So, let's look at the writeGitPropertiesFiles.gradle file:

task writeGitPropertiesFile(dependsOn: [
rootProject.gitMetadata, processResources]) {

 ext.outputFile =
file("${sourceSets.main.output.resourcesDir}/git.properties")

 doLast() {
 new Properties(
 'git.branch' : gitMetadata.branch,
 'git.commit.id' : gitMetadata.commitId,
 'git.commit.time' : gitMetadata.commitTime
).store(new BufferedWriter(new FileWriter(outputFile))
{
 public void write(String s, int off, int len)
throws IOException {
 if (s.startsWith("#")) {
 return
 }
 super.write(s, off, len)
 }
 }, null)
 }
}
jar.inputs.file writeGitPropertiesFile.outputFile
jar.dependsOn writeGitPropertiesFile

This file defines another task aimed at writing all this Git metadata to
git.properties. Let's break it down:

This task declares a dependency on rootProject.gitMetadata, which
we just finished explaining.
Then it declares the output file to be
{sourceSets.main.output.resourcesDir}/git.properties, which
is essentially the folder all src/main/resource files are copied into
before JARing them up.
Next, it constructs a Java Properties object and loads it with property
names and values, read from gitMetadata. This is written to disk using
BufferedWriter.
As a last step, the task tells the project's jar task that this task's output
file (git.properties) should be included as both an input and a
dependency. This ensures that the JAR command doesn't run before this
phase is executed.

Tip

Remember, this mechanism of fetching project and Git properties is only
available if we are using gradle as our build tool. To do similar things with
Maven, see http://docs.spring.io/spring-
boot/docs/1.1.6.RELEASE/reference/htmlsingle/#production-ready-
application-info. Also, these are only available when using a runnable JAR
file, not from bootRun.

Now, let's bundle it up and run it:

$./gradlew clean build && java -jar build/libs/network-
monitor-0.0.1-SNAPSHOT.jar

After the app is up, we can now visit http://localhost:8080/info and see
the fruit of our efforts, which is as follows:

http://docs.spring.io/spring-boot/docs/1.1.6.RELEASE/reference/htmlsingle/#production-ready-application-info

Spring Boot nicely breaks up the property names separated by dots into a
hierarchical structure. The build section has information conveniently inserted
from build.gradle. Also, git contains the branch name, commit hash ID, and
time of the commit. Now when we get that 2:00 a.m. phone call, we can ask
them to e-mail us a screenshot. Then we can quickly check it against our source
repository and start solving the problem using the correct baseline.

Tip

This mechanism of gathering properties and Git info to serve up underneath
/info only works when we create and run the JAR file. Simply running the
app from our IDE or using ./gradlew bootRun won't produce any new
content. It should also be pointed out that if we previously built a JAR file, that
information will be served up even if it's stale.

Creating custom metrics to track the
message traffic
We've created a custom health check and also added custom info about our
app. Another useful strategy will be to create some custom metrics. In previous
chapters, we saw how Spring Boot's Actuator comes with some out-of-the-box
counters and gauges for web activity. For this section, let's count the flow of
messages through the system.

Earlier in this chapter, we coded a simulator that would generate events
periodically. The following fragment shows an updated version of that
constructor to support metrics:

final private JmsTemplate jmsTemplate;
final private String destination;
final private CounterService counterService;

public NetworkEventSimulator(JmsTemplate jmsTemplate, String
destination,
 CounterService counterService) {
 this.jmsTemplate = jmsTemplate;
 this.destination = destination;
 this.counterService = counterService;
}

This constructor adds Spring Boot's
org.springframework.boot.actuate.metrics.CounterService to the
simulator, giving us the means to start counting generated events.

The following code shows more edits to the simulator:

@Scheduled(fixedRate = 1000L)
public void simulateActivity() {
 ...
 Alarm event = new Alarm(hostname, LocalDateTime.now(),
 severity);
 jmsTemplate.convertAndSend(destination, event);
 counterService.increment("messages.total.produced");
 counterService.increment("messages." + event.getHostname()

+ ".produced");
}

At the bottom of the simulateActivity method, we have added two extra
lines after sending out the message. It increments two counters:

messages.total.produced: This counts all messages
message.<hostname>.produced: This counts messages split up by
hostname

Now, let's edit NetworkEventConsumer as well:

package learningspringboot;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import
org.springframework.boot.actuate.metrics.CounterService;
import org.springframework.stereotype.Component;

@Component
public class NetworkEventConsumer {

 private static final Logger log =

LoggerFactory.getLogger(NetworkEventConsumer.class);

 private final CounterService counterService;

 @Autowired
 public NetworkEventConsumer(CounterService counterService)
{
 this.counterService = counterService;
 }

 public void process(Alarm event) {
 log.info("Processing " + event);
 counterService.increment("messages.total.consumed");
 counterService.increment("messages." +
event.getHostname() + ".consumed");
 }
}

Here we do the same thing and populate CounterService by constructor
injection. As we process messages, we are creating a metric similar to the
simulator, only this time we are counting the messages consumed.

No further edits are necessary for NetworkEventConsumer because it's
automatically loaded up by @ComponentScan. However, the
NetworkEventSimulator class is wired up in Application, so we need to
make edits there as well:

@Bean
NetworkEventSimulator simulator(JmsTemplate jmsTemplate,
CounterService counterService) {
 return new NetworkEventSimulator(jmsTemplate, MAILBOX,
counterService);
}

This change in the simulator bean definition shows a CounterService
instance fetched from the application context and injected into
NetworkEventSimulator upon creation. Spring Boot Actuator automatically
created this bean and added it to the application context, making it incredibly
easy to tap into its metrics gathering system.

Now, when we run our app and visit http://localhost:8080/metrics, we
should see something like the following screenshot:

Looking at the metrics, we can see the following:

There have been 17 multiplex205 messages produced and consumed
There have been 20 router101 messages produced and consumed
There have been 15 switch1143 messages produced and consumed
This adds up to 52 total messages produced and consumed

We can also decrement counters. To top it off, Spring Boot Actuator also has a
GaugeService that takes snapshot values in time that can capture anything.
This opens the door to creating our own metrics, allowing us to track virtually
anything. We can count errors, exceptions, and other bad behavior in our app.

Tweaking management ports,
address, and paths
So far, we've done some debugging as well as customizing the metrics.
Another valuable feature is how we can customize the management endpoints
to our liking.

By default, the management endpoints (such as /info and /metrics) are
simply different routes hosted on the same port. Let's change this from port
8080 to 9000 by adding this to application.properties:

management.port=9000

It's also possible to change the IP address that the management endpoints are
hosted on, as follows:

management.address=127.0.0.1

This ensures that the management endpoints are only available when browsing
on the machine itself. An alternative strategy would be to have the main
application advertising itself on a public facing IP address while
management.address is configured with a private, VPN-based address.

Also, what if we prefer to group all the endpoints under one path? We can
tweak things like this:

management.context-path=/manage

Finally, it's good to know that each endpoint's route can be altered as well. To
change the info endpoint, include the following code in
application.properties:

endpoints.info.id=appdata

Tip

The other endpoints you can adjust are autoconfig, beans, configprops,

dump, env, health, metrics, mappings, shutdown, and trace. endpoints.
The <name>.id=/<newpath> statement is the way to override the default
routes.

So what happens if we visit the app through a public-facing site?

We can't see it! There is no unauthorized access or fancy error page. Instead,
we simply have the browser telling us that such a path doesn't exist. We can't
even deduce that this is a Spring Boot application because no information is
given away.

Tip

Want to test this out on your own machine? You probably won't have the same
IP address shown on the screen. Try ifconfig or ipconfig and look for an
address other than localhost or 127.0.0.1.

Now, let's visit the endpoint on localhost:

We can see it now.

Tip

Changing the port and the context path is arguably redundant. Setting a custom
context path is meant to avoid conflicts with any existing routes. The same
isolation is provided by changing management endpoints to a different port. We
just combined these options together for demonstration purposes.

Restricting access only to JMX
We've created several customized endpoints and tailored things to suit our
needs. But what if we prefer to do all the management work through JMX? We
can easily shutdown HTTP endpoints if that's our planned configuration.

Let's replace the HTTP customizations in application.properties from the
previous section with the following line:

management.port=-1

By setting the management port to -1, Spring Boot gets the message to switch
off HTTP endpoints. Launch the application and there will be no Spring MVC
management endpoints:

$./gradlew bootRun
...
 . ____ _
\ ___' _(_) _ _ \ \ \ \
(()__ | ' | '_| | ' \/ ' | \ \ \ \
\\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, |
=========|_|==============|___/=/_/_/_/
:: Spring Boot :: (v1.1.6.RELEASE)

2014-07-11 22:26:19.194 ... : Starting Application on retina
with PID 18850 (/...
...
2014-07-11 22:26:21.557 ... : JMX consoles can connect to
service:jmx:rmi:///j...
...
2014-07-11 22:26:22.477 ... : Located managed bean
'requestMappingEndpoint': r...
2014-07-11 22:26:22.501 ... : Located managed bean
'environmentEndpoint': regi...
2014-07-11 22:26:22.506 ... : Located managed bean
'healthEndpoint': registeri...
2014-07-11 22:26:22.510 ... : Located managed bean
'beansEndpoint': registerin...
2014-07-11 22:26:22.514 ... : Located managed bean
'infoEndpoint': registering...

2014-07-11 22:26:22.519 ... : Located managed bean
'metricsEndpoint': register...
2014-07-11 22:26:22.523 ... : Located managed bean
'traceEndpoint': registerin...
2014-07-11 22:26:22.527 ... : Located managed bean
'dumpEndpoint': registering...
2014-07-11 22:26:22.532 ... : Located managed bean
'autoConfigurationAuditEndp...
2014-07-11 22:26:22.535 ... : Located managed bean
'shutdownEndpoint': registe...
2014-07-11 22:26:22.543 ... : Located managed bean
'configurationPropertiesRep...
2014-07-11 22:26:22.546 ... : Starting beans in phase
2147483647
2014-07-11 22:26:22.602 ... : Tomcat started on port(s):
8080/http
2014-07-11 22:26:22.604 ... : Started Application in 3.75
seconds (JVM running...
...

Various beans such as infoEndpoint are shown in the preceding console
output. However, these aren't the Spring MVC routes we saw earlier. Instead,
it's the service beans that back them and they're being exposed as managed
beans. If you run the code yourself, you will see more details, such as
[org.springframework.boot:type=Endpoint,name=infoEndpoint].

Connecting to the app via JConsole
and jmxterm
We can connect via JMX and interrogate them for information. There are
multiple tools available, so why not start with JConsole, the one that comes
with the JDK already on our system?

In one shell, we need to launch our application as follows:

$./gradlew bootRun
...

Somewhere in this console output, there is a debug message containing JMX
consoles can connect to
service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi. Let's save this value so
that we can use it further down in this section.

From another shell, launch JConsole as follows:

$ jconsole

A subwindow should pop up. Select Remote Process and enter the address
we just found, as shown in the following screenshot:

With the connection string entered, we can click on Connect to attach to the
application.

Tip

It's common to see another popup after this, reporting a failure to create a
secure connection. If so, simply click on Insecure and it will switch to making
an open, non-SSL-based connection.

Now if we navigate to MBeans and expand org.springframework.boot
followed by Endpoint, we can see all the managed beans, as shown in the
following screenshot:

We can see the same data presented earlier from /info. Simply expand
infoEndpoint | Attributes | Data:

app={chapter=3, manuscript={raw=asciidoctor,
converter=https://github.com/gregturn/asciidoctor-packt,
formatted=LibreOffice}, name=Network Manager, project=Learning
Spring Boot}
build={artifact=${project.artifactId},
description=${project.description}, group=${project.groupId},
version=${project.version}}
git={branch=master, commit={id=6b68107, time=2014-07-
08T22:49:24-0500}}

This is, again, the compressed version of data that might be difficult to parse. If
we copy it to a text editor or our IDE, we might be able to reformat it to view.

Of course, JConsole isn't the only tool to access data served over JMX. A
handy command-line tool, jmxterm
(http://wiki.cyclopsgroup.org/jmxterm/download.html), can be used as well.
Assuming we downloaded jmxterm (which is a runnable JAR file), we can
proceed like this:

$ java -jar jmxterm-1.0-alpha-4-uber.jar --url
service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi
Welcome to JMX terminal. Type "help" for available commands.

There are lots of beans, but we are only interested in the ones inside domain
org.springframework.boot. Let's pick this domain and see what beans it
contains:

$>domain org.springframework.boot
#domain is set to org.springframework.boot
$>beans
#domain = org.springframework.boot:
org.springframework.boot:name=autoConfigurationAuditEndpoint,t
ype=Endpoint
org.springframework.boot:name=beansEndpoint,type=Endpoint
org.springframework.boot:name=configurationPropertiesReportEnd
point,type=Endpoint
org.springframework.boot:name=dumpEndpoint,type=Endpoint
org.springframework.boot:name=environmentEndpoint,type=Endpoint

org.springframework.boot:name=healthEndpoint,type=Endpoint
org.springframework.boot:name=infoEndpoint,type=Endpoint
org.springframework.boot:name=metricsEndpoint,type=Endpoint
org.springframework.boot:name=requestMappingEndpoint,type=Endp
oint
org.springframework.boot:name=shutdownEndpoint,type=Endpoint
org.springframework.boot:name=traceEndpoint,type=Endpoint

This listing shows us all the management beans that are available.

Let's continue to check out infoEndpoint by picking it as our bean:

$>bean
org.springframework.boot:name=infoEndpoint,type=Endpoint
#bean is set to
org.springframework.boot:name=infoEndpoint,type=Endpoint

http://wiki.cyclopsgroup.org/jmxterm/download.html

Let's see all the various attributes, operations, and notifications this endpoint
has:

$>info
#mbean =
org.springframework.boot:name=infoEndpoint,type=Endpoint
#class name =
org.springframework.boot.actuate.endpoint.jmx.DataEndpointMBean

attributes
 %0 - Data (java.lang.Object, r)
 %1 - EndpointClass (java.lang.String, r)
 %2 - Sensitive (boolean, r)
operations
 %0 - java.lang.Object getData()
 %1 - java.lang.String getEndpointClass()
 %2 - boolean isSensitive()
#there's no notifications

We can see three pieces of information: Data, EndpointClass, and
Sensitive.

Let's fetch the Data attribute as follows:

$>get Data
#mbean =
org.springframework.boot:name=infoEndpoint,type=Endpoint:
Data = {
 app = {
 chapter = 3;
 manuscript = {
 raw = asciidoctor;
 converter = https://github.com/gregturn/asciidoctor-
packt;
 formatted = LibreOffice;
 };
 name = Network Manager;
 project = Learning Spring Boot;
 };
 build = {
 artifact = ${project.artifactId};
 description = ${project.description};

 group = ${project.groupId};
 version = ${project.version};
 };
 git = {
 branch = master;
 commit = {
 id = 6b68107;
 time = 2014-07-08T22:49:24-0500;
 };
 };
};
$>quit

This format is a bit nicer than what we saw inside JConsole. Also, feel free to
look at the other bits of data tied to this endpoint. Visit the other endpoints as
well and see what they have.

While the format inside jmxterm was nicer, navigating to the data was more
unwieldy. Of course, JMX is a well-defined standard. We can either look for
other tools or potentially write our own Java code to access these attributes.
(Spring Boot CLI app perhaps?) Either way, JMX provides an alternative
mechanism to access management data.

Creating custom CRaSH commands
In Chapter 1, Quick Start with Groovy, we got an initial glimpse of CRaSH
(http://www.crashub.org/), the shell for Java apps. We took a quick tour of that
application. In this section, we'll not only add CRaSH, but also write some
custom commands.

First, we need to add springboot-starter-remote-shell to the build file:

compile("org.springframework.boot:springboot-starter-remote-
shell")

Now when we run our app, we will have a lot of out-of-the-box management
features. However, the focus of this section is to create some custom
commands and then see them in action.

Spring Boot Actuator will look in classpath*:/commands/ and
classpath*:/crash/commands/ for any Groovy scripts. Let's write one!

Create src/main/resources/commands/activemq.groovy and start adding
some key import statements at the top as follows:

package learningspringboot.commands

import org.crsh.cli.Command
import org.crsh.cli.Man
import org.crsh.cli.Usage
import org.crsh.command.InvocationContext
import org.springframework.beans.factory.BeanFactory
import
org.springframework.boot.actuate.metrics.repository.MetricRepo
sitory

import javax.jms.ConnectionFactory

Tip

While the script is in src/main/resources/commands, there is no
requirement for it to be in the commands package. So we've declared it to be
nicely segmented into the learningspringboot.commands package.

http://www.crashub.org/

Now let's start crafting some CRaSH commands. We'll start by coding the class
declaration and the first method shown as follows:

...
@Usage("Various commands to interact with ActiveMQ JMS
broker")
class activemq {

 @Usage("Check ActiveMQ status")
 @Man("Creates a connection to the broker. If successful,
report 'UP'. If not, report 'DOWN'")
 @Command
 def ping(InvocationContext context) {
 BeanFactory beanFactory =
context.attributes['spring.beanfactory']
 try {

beanFactory.getBean(ConnectionFactory).createConnection()
 "Broker is UP!"
 } catch (JMSException) {
 "Broker is DOWN!"
 }
 }
...

There are quite a few aspects shown here. Let's walk through it line-by-line to
understand how Spring Boot Actuator and CRaSH work together.

The @Usage annotation at the class level contains the description of our
activemq command grouping. It will be shown when we type help inside
CRaSH (as we'll see later in this section).

The class name itself, activemq, becomes part of what we'll type in the shell
to invoke one of our commands. For this reason, we don't follow standard
camel-case conventions and instead make it lowercase.

Each preceding method has a set of annotations described as follows:

The @Usage annotation on the method provides a short description of the
command when we type activemq and all commands are listed
The @Man annotation provides more detailed text about the command

when we type man activemq
The @Command annotation signals CRaSH to invoke the ping method
when we type activemq ping

CRaSH provides an InvocationContext variable if we want it. This gives us
access to information about the current session. Spring Boot Actuator embeds
some extra properties inside this context shown as follows:

spring.boot.version

spring.version

spring.beanfactory

spring.environment

In this code, we use it to extract BeanFactory in order to grab JMS
ConnectionFactory. Using this, we try to create a connection. If successful,
the code returns UP!. If not, it returns DOWN!.

Note

Don't overlook that spring.beanfactory is all lowercase. If you try to fetch
spring.beanFactory, it won't fail fast as a non-existent key; instead it will
fetch a null value and probably fail later on with a null pointer exception.

After walking through the preceding ping command, understanding the
following metrics command will probably be easier:

...
 @Usage("Print out ActiveMQ metrics")
 @Man("Iterate over all metrics, and print out any that
involves 'messages'")
 @Command
 void metrics(InvocationContext context) {
 BeanFactory beanFactory =
context.attributes['spring.beanfactory']
 def metricRepository =
beanFactory.getBean(MetricRepository)
 metricRepository.findAll().each { metric ->
 if (metric.name.startsWith("counter.messages")) {
 out.println "${metric.name}: ${metric.value}"
 }
 }

 }

}

The metrics command has the same CRaSH machinery (@Usage, @Man, and
@Command) as ping. However, notice that it has a return type of void. That's
because it doesn't return anything. Instead, it prints out its results.

Inside the method, it fetches a copy of BeanFactory. With this, it gets ahold of
the MetricRepository bean. This is the bean where the CounterService
code, earlier in this chapter, stores its metrics. Our metrics command then
iterates over all metrics, looking for ones that start with counter.messages. It
finally prints each metric's name and value to the console.

Tip

out is provided by CRaSH when it transforms the script into a set of
commands.

Having walked through all the code, let's try it out! We can launch our app and
check out CRaSH, but by default it will generate a random password every
time (and print that password on the console). To override it with a fixed
password, we just need to supply it with
shell.auth.simple.user.password.

In this case, let's do this on the command line using Spring Boot's alternative
property setting mechanism:

$ SHELL_AUTH_SIMPLE_USER_PASSWORD=password ./gradlew bootRun
...
 . ____ _
\ ___' _(_) _ _ \ \ \ \
(()__ | ' | '_| | ' \/ ' | \ \ \ \
\\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, |
=========|_|==============|___/=/_/_/_/
:: Spring Boot :: (v1.1.6.RELEASE)

2014-07-13 15:32:28.658 ... : Configuring property
mail.debug=false from prope...

2014-07-13 15:32:28.659 ... : Configuring property
ssh.port=2000 from properties
2014-07-13 15:32:28.659 ... : Configuring property auth=simple
from properties
2014-07-13 15:32:28.660 ... : Configuring property
auth.simple.username=user f...
2014-07-13 15:32:28.660 ... : Configuring property
auth.simple.password=passwo...
2014-07-13 15:32:28.667 ... : Booting SSHD
2014-07-13 15:32:28.688 ... : BouncyCastle already registered
as a JCE provider
2014-07-13 15:32:29.122 ... : About to start CRaSSHD
2014-07-13 15:32:29.142 ... : CRaSSHD started on port 2000

The console output has been trimmed down to CRaSH-specific things. We get
the following information from the output:

Username is user: This can be overridden with
shell.auth.simple.user

Password is password (though cut off due to the format of this book)
SSH port is 2000: This can be overridden with shell.ssh.port

While this is running, we can connect to another shell through SSH:

$ ssh -p 2000 user@localhost
Password authentication
Password:
 . ____ _
\ ___' _(_) _ _ \ \ \ \
(()__ | ' | '_| | ' \/ ' | \ \ \ \
\\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, |
=========|_|==============|___/=/_/_/_/
:: Spring Boot :: (v1.1.6.RELEASE) on retina

From here, we can quickly get a listing of all the commands by typing help:

> help
Try one of these commands with the -h or --help switch:

NAME DESCRIPTION
activemq Various commands to interact with ActiveMQ JMS

broker
autoconfig Display auto configuration report from
ApplicationContext
beans Display beans in ApplicationContext
cron manages the cron plugin
dashboard a monitoring dashboard
egrep search file(s) for lines that match a pattern
endpoint Invoke actuator endpoints
env display the term env
filter a filter for a stream of map
java various java language commands
jmx Java Management Extensions
jul java.util.logging commands
jvm JVM informations
less opposite of more
mail interact with emails
man format and display the on-line manual pages
metrics Display metrics provided by Spring Boot
shell shell related command
sleep sleep for some time
sort sort a map
system vm system properties commands
thread JVM thread commands
help provides basic help
repl list the repl or change the current repl

At the top of the commands, we see activemq and its top level description.
Let's dig in the details of activemq:

> activemq
usage: activemq [-h | --help] COMMAND [ARGS]

The most commonly used activemq commands are:
 metrics Print out ActiveMQ metrics
 ping Check ActiveMQ status

We can see the listing of both the commands we created. This is where it
displays each command's @Usage text.

For more details, try man activemq:

> man activemq

NAME
 activemq - Various commands to interact with ActiveMQ
JMS broker

SYNOPSIS
 activemq [-h | --help] COMMAND [ARGS]

PARAMETERS
 [-h | --help]
 Display this help message

COMMANDS
 metrics
 Iterate over all metrics, and print out any that
involves 'messages'

 ping
 Creates a connection to the broker. If successful,
report 'UP'. If not, report 'DOWN'

This shows the more detailed @Man text. Even though our code contains a
single line, this is the perfect place to embed highly detailed information for
the users.

Time to invoke things! First, let's check the status of our JMS broker:

> activemq ping
Broker is UP!

Note

Since we are using an embedded broker, it's impossible to shut down the
broker and try out this command without shutting down the app. It's left as an
exercise to reconfigure this application to use a standalone broker, start up this
app, and then check the status of the broker with this command.

Now, let's get a read-out on our message-based metrics:

> activemq metrics
counter.messages.multiplex205.consumed: 25
counter.messages.multiplex205.produced: 25
counter.messages.router101.consumed: 23

counter.messages.router101.produced: 23
counter.messages.switch1143.consumed: 12
counter.messages.switch1143.produced: 12
counter.messages.total.consumed: 60
counter.messages.total.produced: 60

We're not going to delve into the particulars of these metrics because we have
already talked about them earlier in this chapter. Instead, let's focus on how
easy it was to expose already collected metrics defined earlier in this chapter.
The same metrics are visible through either HTTP endpoints, JMX endpoints,
or inside CRaSH (endpoint invoke metricsEndpoint).

We just have a nicer format inside CRaSH. We also took two different bits of
information (health and metrics) involving ActiveMQ and served them up from
a common location (the activemq commands).

This opens the door to what can be embedded as support commands inside
CRaSH. We have access to the application context and can gather whatever
information we need from various parts of the application.

Tip

For more ideas and inspiration on creating management tools, watch my
webinar video at http://bit.ly/app-mgmt-tools-with-boot.

http://bit.ly/app-mgmt-tools-with-boot

Summary
In this chapter, we created a JMS-based publisher/subscribe app using
embedded ActiveMQ. We used it as the means to experiment with various
tools, such as Spring Boot's auto-configuration report. Using this report, we
deduced what was configured (embedded versus standalone broker). We were
able to reconfigure things to use a standalone broker and override Spring
Boot's opinion.

We added Spring Boot's Actuator module and looked a little deeper at
configuring customized health checks, application information, and metrics. We
learned how to ping ActiveMQ's broker, display various application
information including Git and project metadata and also gather customized
metrics on message flow. We then started adjusting the settings of management
endpoints, such as port, path, and URL. Then we shut off the HTTP endpoints
and accessed things through JMX. Finally, we added the remote CRaSH shell,
and added some custom commands.

In the next chapter, we will dive into managing application data using Spring
Boot's super cool features.

Chapter 4. Data Access with Spring
Boot
"@springboot with @springframework is pure productivity! Who said in #java one has to write double
the code than in other langs? #newFavLib"

--Frank Neff @frank_neff

In the previous chapter, we got our arms around the means to debug and
manage apps. With all these tools, it's time to build a real app. Few
applications exist that don't touch a database. In fact, data storage is arguably
one of the most critical components we encounter with app development. In
this chapter, we'll create an app that is used to manage sports teams and
teammates. We'll persist the data to JPA and MongoDB datastores for both
development and production needs.

In this chapter, we will be:

Creating an app that writes data to an H2 in-memory dev database using
Spring Boot's JPA support
Creating entities and repositories required to manage teammate info
Learning how to load development data using SQL scripts
Seeing how to alternatively load data using Spring Data APIs
Showing how to configure the app with a production profile that won't
wipe and reload the data every time it starts
Reconfiguring the application to use MongoDB instead
Adding a profile to wipe and reload data when in development but
maintain existing data when in production

Creating an app using H2's in-
memory database
To create an application, we need a quick way to get off the ground. H2
(http://h2database.com) provides a very convenient in-memory database that
supports JPA. It makes it really simple for development work. Using
http://start.spring.io as we did in Chapter 2, Quick Start with Java, we can
quickly create the following application build file:

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath("org.springframework.boot:springboot-gradle-
plugin:1.1.6.RELEASE")
 }
}

apply plugin: 'java'
apply plugin: 'springboot'

jar {
 baseName = 'teams'
 version = '0.0.1-SNAPSHOT'
}
sourceCompatibility = 1.8
targetCompatibility = 1.8

repositories {
 mavenCentral()
}

dependencies {
 compile("org.springframework.boot:springboot-starter-data-
jpa")
 compile("com.h2database:h2")
}

task wrapper(type: Wrapper) {

http://h2database.com
http://start.spring.io

 gradleVersion = '2.1'
}

What do we have? Let's break down this build file:

It pulls in springboot-starter-data-jpa, which is the Spring Boot
starter that provides access to Spring Data JPA
(http://projects.spring.io/spring-data-jpa).
To get going, it has com.h2database, which is the in-memory database
we were talking about earlier.
Note that no versions are specified outside of springboot-gradle-
plugin. This plugin uses Spring Boot's dependency settings to populate
the version numbers for us.

http://projects.spring.io/spring-data-jpa

Defining entities and repositories
When developing a data-oriented app, it's important to model the domain
objects. For this application, we will manage Team and Teammate. The
relationship between these two domain classes is defined as follows:

A Team can have zero or more Teammates
A Teammate is associated with zero or one Teams

Here is the definition for the Team class:

package learningspringboot;

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import javax.persistence.OneToMany;
import java.util.ArrayList;
import java.util.List;

@Entity
public class Team {

 @Id @GeneratedValue
 private Long id;

 private String name;

 @OneToMany(mappedBy = "team")
 private List<Teammate> members;

 private Team() {
 members = new ArrayList<>();
 }

 public Team(String name) {
 this();
 this.name = name;
 }

 public String getName() {
 return name;

 }

 public void setName(String name) {
 this.name = name;
 }

 public List<Teammate> getMembers() {
 return members;
 }

 public void setMembers(List<Teammate> members) {
 this.members = members;
 }
}

In the preceding code, we can see the model for a team:

The id attribute is managed internally. The @Id and @GeneratedValue
annotations ensure that unique keys will be picked without us having to
lift a finger.
It has a name.
It contains a list of members. The @OneToMany annotation indicates that
this relationship is "owned" by the Teammate entity's table through its
team attribute.
We have two constructors. The private, no argument one is needed by
JPA, but we hide it from public consumption. Instead, we have a public
one that requires the user to supply the team's name. This ensures that no
Team instance is created without its name.

Now let's look at the definition of the Teammate class:

package learningspringboot;

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import javax.persistence.ManyToOne;

@Entity
public class Teammate {

 @Id @GeneratedValue

 private Long id;

 private String firstName;
 private String lastName;
 private String position;

 @ManyToOne
 private Team team;

 private Teammate() {
 }

 public Teammate(String firstName, String lastName) {
 this();
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getPosition() {
 return position;
 }

 public void setPosition(String position) {
 this.position = position;
 }

 public Team getTeam() {
 return team;
 }

 public void setTeam(Team team) {
 this.team = team;
 }

 @Override
 public String toString() {
 return id + ": " + firstName + " " + lastName + " is
playing " + position + " for the " + team.getName();
 }
}

Each Teammate instance contains several attributes:

The id attribute is managed internally.
The firstName, lastName, and position attributes are simple attributes
that describe a teammate.
The team attribute shows us the related Team instance, which is linked by
the @ManyToOne annotation.
The constructors for Teammate use the same tactic as Team. We only
expose the one that requires firstName and lastName to ensure that
required fields are provided while the other one is hidden as private. (If
JPA didn't need the empty constructor, we would remove it entirely.)

To get off the ground with Spring Data, we need to create corresponding
repository interfaces based on the domain objects we just defined. First, we'll
declare the TeamRepository interface:

package learningspringboot;

import org.springframework.data.repository.CrudRepository;

public interface TeamRepository extends CrudRepository<Team,
Long> {}

This empty interface extends Spring Data's CrudRepository interface,
declaring it to manage Team entities with an ID type of Long.

What methods does CrudRepository come with? They are listed in the
following table:

Method Description

count() Returns the number of entities available

delete(ID id) Deletes the entity with the given id

delete(Iterable<? extends T> entities) Deletes the given entities

delete(T entity) Deletes a given entity

deleteAll() Deletes all entities managed by the repository

exists(ID id) Returns whether an entity with the given id exists

findAll() Returns all instances of the type with the given IDs

findOne(ID id) Retrieves an entity by its id

save(Iterable<S> entites) Saves all given entities

save(S entity) Saves a given entity

The methods shown in this table list enough operations to do all CRUD
operations.

Note

There is also a JpaRepository interface that subclasses CrudRepository. So
why aren't we using it? Because it ties us to its JPA-specific features,
increasing coupling. In general, it's best to remove this dependency. This way,
the only JPA requirements are the annotations that are applied to the domain
objects.

Now, let's look at the definition for TeammateRepository:

package learningspringboot;

import org.springframework.data.repository.CrudRepository;

public interface TeammateRepository extends
CrudRepository<Teammate, Long> {}

This interface does the same, only it manages Teammate entities with the same
ID type of Long.

Note

So how do these repositories work? There is no code here or in Spring Data's
repository interfaces. Search this book and you won't find any concrete details
either. It's simple. Spring Data actually writes the database operations for us
by creating a concrete proxy that implements the interface. The proxy manages
connections and writes queries and data manipulation ops for the underlying
datastore. For more details, I suggest that you read Spring Data by Mark
Pollack, Oliver Gierke, Thomas Risberg, Jon Brisbin, and Michael Hunger.
Although it was released in 2012, it provides a keen insight into the
fundamentals of the various Spring Data projects.

Spring Data scans for interfaces that extend CrudRepository, and then it
automatically creates the necessary JPA configuration. Spring Boot continues
this by adding additional beans required by Spring Data, such as automatically
creating the necessary DataSource beans along with many others.

Finally, to launch our app, we need this bit of Spring Boot glue code:

package learningspringboot;

import javax.annotation.PostConstruct;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import
org.springframework.boot.autoconfigure.EnableAutoConfiguration
;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;

@Configuration
@ComponentScan
@EnableAutoConfiguration
public class Application {

 private static final Logger log =
LoggerFactory.getLogger(Application.class);

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }

 @Autowired
 TeammateRepository teammateRepository;

 @PostConstruct
 void seeTheRoster() {
 for (Teammate teammate : teammateRepository.findAll())
{
 log.info(teammate.toString());
 }
 }
}

The preceding code should look familiar:

@Configuration: This indicates that this is a source of beans that need to
be added to the application context
@ComponentScan: This asks Spring to scan the existing package for other
components, services, and configurations
@EnableAutoConfiguration: This turns on Spring Boot's
autoconfiguration logic
@Autowired TeammateRepository teammateRepository: This
provides the Application class with a copy of TeammateRepository
after it is created

There is a method called seeTheRoster marked with the @PostConstruct
annotation. What does this method do? After all Spring beans are initialized in
the application context, any methods with @PostConstruct are invoked
automatically. This method is designed to use the autowired

TeammateRepository instance to fetch all the teammates and print them out to
console after things are properly launched. Perhaps you have noticed: we
haven't loaded any data yet! Don't worry. This is covered in the next section.

Tip

While useful for demonstrations and development purposes, a method that
dumps out all the database's content is not recommended for production
systems.

Spring Boot's autoconfiguration will detect Spring Data JPA and activate
scanning for both entity types and repository interfaces.

Loading data using a SQL script
Note

This isn't a primer on JPA. This chapter will use bits of Spring Data and JPA to
show you how Spring Boot makes things simpler when accessing data.
However, you should do extra reading if you aren't already familiar with JPA
and the various tradeoffs you have to make for your development needs.

To get things going, we need to indicate what type of database we are using.
Create src/main/resources/application.properties with the following
settings:

spring.datasource.platform: h2

This immediately signals Spring Boot that we are using H2. Spring Boot will
look for data.sql as well as data-${platform}.sql files to run. It uses
Spring JDBC to do this (which was pulled in transitively by spring-boot-
starter-data-jpa).

Having specified platform h2, now create src/main/resources/data-
h2.sql, as follows:

insert into team
(id, name)
values
(1, 'Spring Boot Badgers');

insert into teammate
(id, first_name, last_name, position, team_id) values
(1, 'Greg', 'Turnquist', '2nd base', 1);

insert into teammate (id, first_name, last_name, position,
team_id) values
(2, 'Roy', 'Clarkson', '1st base', 1);

insert into teammate
(id, first_name, last_name, position, team_id) values
(3, 'Phil', 'Webb', 'pitcher', 1);

This SQL script first creates a row in the team table for Spring Boot
Badgers. Then it adds rows for Greg Turnquist, Roy Clarkson, and Phil Webb
to the teammate table—all three are linked by foreign key to that team.

It's important to note that the previous SQL code doesn't actually create the
schema. Instead, Spring Boot automatically configures JPA to run in the
create-drop mode when it detects H2. The create-drop mode will
automatically create a schema based on the defined entities and their JPA
annotations.

Tip

Should I use what JPA provides, or configure the database schema myself? The
answer comes down to what best fits your development team. Some teams
develop the database schema outside of their apps. If that is your case, JPA's
annotations make it super easy to line up your entities with the tables and
columns. If you want Spring Boot to perform custom schema creation
operations instead, create scheme.sql and/or schema-${platform}.sql. To
switch off ALL database initialization, add
spring.datasource.initialize=false to application.properties.

As a last step, let's log some messages from Hibernate. To do this, we need to
create src/main/resources/logback.xml:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <include
resource="org/springframework/boot/logging/logback/base.xml">
 <logger name="org.hibernate.SQL" level="DEBUG">
</configuration>

Let's break down the details of this logging configuration file:

It bases itself off Spring Boot's base.xml logback configuration
We add the DEBUG level logging for org.hibernate.SQL

What is the benefit of this setup? By simply inheriting Spring Boot's logback
configuration, we don't have to think about loggers, formats, appending, and so
on. Instead, we can shift immediately to log levels for specific packages,

which is often all we need when customizing logging.

Note

What is logback? Logback (http://logback.qos.ch) is meant as a successor to
log4j. Spring Boot itself has no external dependencies for a particular logging
system. Instead, it performs auto-configuration based on what is on the
classpath. This helps with the fact that third-party libraries use different tools
such as logback, slf4j, and others. We are able to configure the log levels for
all these systems through a logback.xml file.

With everything configured, let's fire things up and see what happens:

$./gradlew bootRun
...
 . ____ _
\ ___' _(_) _ _ \ \ \ \
(()__ | ' | '_| | ' \/ ' | \ \ \ \
\\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, |
=========|_|==============|___/=/_/_/_/
:: Spring Boot :: (v1.1.6.RELEASE)

2014-07-22 11:46:14.274 ... : Starting Application on retina
with PID 3268 (/U...
2014-07-22 11:46:14.305 ... : Refreshing
org.springframework.context.annotatio...
2014-07-22 11:46:15.214 ... : Building JPA container
EntityManagerFactory for ...
2014-07-22 11:46:15.232 ... : HHH000204: Processing
PersistenceUnitInfo [
 name: default
 ...]
2014-07-22 11:46:15.288 ... : HHH000412: Hibernate Core
{4.3.5.Final}
2014-07-22 11:46:15.289 ... : HHH000206: hibernate.properties
not found
2014-07-22 11:46:15.290 ... : javassist
2014-07-22 11:46:15.446 ... : HCANN000001: Hibernate Commons
Annotations {4.0....
2014-07-22 11:46:15.560 ... : HHH000400: Using dialect:
org.hibernate.dialect....

http://logback.qos.ch

2014-07-22 11:46:15.695 ... : HHH000397: Using
ASTQueryTranslatorFactory
2014-07-22 11:46:15.973 ... : HHH000227: Running hbm2ddl
schema export
2014-07-22 11:46:15.974 ... : alter table teammate drop
constraint FK_qy82oywo...
2014-07-22 11:46:15.975 ... : HHH000389: Unsuccessful: alter
table teammate dr...
2014-07-22 11:46:15.975 ... : Table "TEAMMATE" not found; SQL
statement:
alter table teammate drop constraint
FK_qy82oywoge1gps3y762x0uix7 if exists [4...
2014-07-22 11:46:15.975 ... : drop table team if exists
2014-07-22 11:46:15.976 ... : drop table teammate if exists
2014-07-22 11:46:15.976 ... : create table team (id bigint
generated by defaul...
2014-07-22 11:46:15.980 ... : create table teammate (id bigint
generated by de...
2014-07-22 11:46:15.981 ... : alter table teammate add
constraint FK_qy82oywog...
2014-07-22 11:46:15.990 ... : HHH000230: Schema export
complete
2014-07-22 11:46:16.071 ... : Executing SQL script from URL
[file:/Users/gturn...
2014-07-22 11:46:16.076 ... : Executed SQL script from URL
[file:/Users/gturnq...
2014-07-22 11:46:16.341 ... : select teammate0_.id as id1_1_,
teammate0_.first...
2014-07-22 11:46:16.353 ... : select team0_.id as id1_0_0_,
team0_.name as nam...
2014-07-22 11:46:16.367 ... : 1: Greg Turnquist is playing 2nd
base for the Sp...
2014-07-22 11:46:16.367 ... : 2: Roy Clarkson is playing 1st
base for the Spri...
2014-07-22 11:46:16.368 ... : 3: Phil Webb is playing pitcher
for the Spring B...
2014-07-22 11:46:16.555 ... : Registering beans for JMX
exposure on startup
2014-07-22 11:46:16.573 ... : Started Application in 2.521
seconds (JVM runnin...
2014-07-22 11:46:16.574 ... : Closing
org.springframework.context.annotation.A...
2014-07-22 11:46:16.575 ... : Unregistering JMX-exposed beans
on shutdown

2014-07-22 11:46:16.577 ... : Closing JPA EntityManagerFactory
for persistence...
2014-07-22 11:46:16.578 ... : HHH000227: Running hbm2ddl
schema export
2014-07-22 11:46:16.579 ... : alter table teammate drop
constraint FK_qy82oywo...
2014-07-22 11:46:16.580 ... : drop table team if exists
2014-07-22 11:46:16.581 ... : drop table teammate if exists
2014-07-22 11:46:16.582 ... : HHH000230: Schema export
complete

What does the preceding console output show? Take a look at the following
bullets:

Building JPA container: We definitely have a JPA-based system
running
create table team and create table teammate: These statements
show that Spring Boot is creating the database schema on our behalf
Executing SQL script from URL: Spring Boot is running our data-
h2.sql script as desired
select teammate0_.id… and select team0_.id…: This is the JPA
query that fetches the team roster
1: Greg Turnquist is playing 2nd base…: This and the other two
teammates are being printed, verifying that they were successfully loaded
earlier
Note

As shown earlier in this book, we are using gradlew, which is the Gradle
wrapper; it saves users of your project from having to install Gradle
themselves. To create a wrapper, you need to have Gradle installed and
then run gradle wrapper. It will create the files required for you to run
the commands throughout this chapter.

Loading data programmatically
What if we don't care for SQL? Or, what if we prefer to write code and let the
compiler point out flaws in our setup? The alternative is to create a database-
loading class using Spring Data APIs to do the heavy lifting:

package learningspringboot;

import javax.annotation.PostConstruct;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

@Service
public class DatabaseLoader {

 private final TeammateRepository teammateRepository;
 private final TeamRepository teamRepository;

 @Autowired
 public DatabaseLoader(TeammateRepository
teammateRepository,
 TeamRepository teamRepository) {
 this.teammateRepository = teammateRepository;
 this.teamRepository = teamRepository;
 }

 @PostConstruct
 private void initDatabase() {
 Team springBootTeam = new Team("Spring Boot Badgers");
 teamRepository.save(springBootTeam);

 Teammate greg = new Teammate("Greg", "Turnquist");
 greg.setPosition("2nd base");
 greg.setTeam(springBootTeam);
 teammateRepository.save(greg);

 Teammate roy = new Teammate("Roy", "Clarkson");
 roy.setPosition("1st base");
 roy.setTeam(springBootTeam);
 teammateRepository.save(roy);

 Teammate phil = new Teammate("Phil", "Webb");

 phil.setPosition("pitcher");
 phil.setTeam(springBootTeam);
 teammateRepository.save(phil);
 }

}

This is how we can programmatically create entries in the database. To see
how it works, let's break it down:

@Service: This indicates that this class should be picked up during
Spring's component scanning
@Autowired: Spring will automatically supply teammateRepository
and teamRepository to the constructor when creating this bean
@PostConstruct: After the bean is created, Spring will run
initDatabase, initializing the database

Let's look a little closer at how one specific player gets loaded inside
initDatabase:

Teammate roy = new Teammate("Roy", "Clarkson");
roy.setPosition("1st base");
roy.setTeam(springBootTeam);

In this fragment, we can see:

A new Teammate object is created. The constructor requires that we
provide first and last names.
We configure the player's position.
We identify what team the player is associated with (an optional setting).
We save the new teammate using the autowired teammateRepository
instance.
We do not set the id. (It's handled automatically.)

Earlier in this chapter, we discussed how Spring Data essentially writes the
database operations for us when we define repository interfaces. For the
simplest operations, we don't have to lift a finger.

Tip

Spring Data makes it easy to create finder methods. If we add
List<Teammate> findByPosition(String position) to
TeammateRepository, Spring Data will automatically craft a query to retrieve
all teammates that have the designated position. For queries that are more
complex than properties, we can apply @Query("custom query") to a given
method and write our own query using SpEL (Spring Expression Language).
As this chapter is about getting up and running and not delving into Spring Data
itself, we won't create any query.

Next, we must delete data-h2.sql and remove application.properties.

We also have to make some slight alterations to the main Application class:

package learningspringboot;

import javax.annotation.PostConstruct;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import
org.springframework.boot.autoconfigure.EnableAutoConfiguration
;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;

@Configuration
@ComponentScan
@EnableAutoConfiguration
public class Application {

 private static final Logger log =
LoggerFactory.getLogger(Application.class);

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }

 @Autowired
 DatabaseLoader databaseLoader;

 @Autowired
 TeammateRepository teammateRepository;

 @PostConstruct
 void seeTheRoster() {
 for (Teammate teammate : teammateRepository.findAll())
{
 log.info(teammate.toString());
 }
 }
}

What changed from the previous version of Application? Just one thing: we
added DatabaseLoader as an autowired dependency inside the Application
class.

What does that mean? We don't actually use it anywhere, but it ensures that
DatabaseLoader is created before Application from a dependency injection
point of view. The side effect is that the DatabaseLoader class'
initDatabase method will run before the Application class' seeTheRoster
method.

Tip

As an alternative to asking for an autowired copy of DatabaseLoader, we
could have put @DependsOn("databaseLoader") as a class-level annotation
on Application. It would have also ensured that initDatabase was run
before seeTheRoster. However, later on in this chapter, we will alter this
autowiring to detect whether or not the development data has been loaded, so
we are keeping things as they are.

The output will look like this:

 . ____ _
\ ___' _(_) _ _ \ \ \ \
(()__ | ' | '_| | ' \/ ' | \ \ \ \
\\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, |
=========|_|==============|___/=/_/_/_/
:: Spring Boot :: (v1.1.6.RELEASE)

2014-07-24 21:57:55.533 ... : Starting Application on retina
with PID 3727 (/U...
2014-07-24 21:57:55.560 ... : Refreshing
org.springframework.context.annotatio...
2014-07-24 21:57:56.454 ... : Building JPA container
EntityManagerFactory for ...
2014-07-24 21:57:56.473 ... : HHH000204: Processing
PersistenceUnitInfo [
 name: default
 ...]
2014-07-24 21:57:56.528 ... : HHH000412: Hibernate Core
{4.3.5.Final}
2014-07-24 21:57:56.530 ... : HHH000206: hibernate.properties
not found
2014-07-24 21:57:56.531 ... : javassist
2014-07-24 21:57:56.684 ... : HCANN000001: Hibernate Commons
Annotations {4.0....
2014-07-24 21:57:56.785 ... : HHH000400: Using dialect:
org.hibernate.dialect....
2014-07-24 21:57:56.917 ... : HHH000397: Using
ASTQueryTranslatorFactory
2014-07-24 21:57:57.191 ... : HHH000227: Running hbm2ddl
schema export
2014-07-24 21:57:57.192 ... : alter table teammate drop
constraint FK_qy82oywo...
2014-07-24 21:57:57.193 ... : HHH000389: Unsuccessful: alter
table teammate dr...
2014-07-24 21:57:57.193 ... : Table "TEAMMATE" not found; SQL
statement:
alter table teammate drop constraint
FK_qy82oywoge1gps3y762x0uix7 if exists [4...
2014-07-24 21:57:57.193 ... : drop table team if exists
2014-07-24 21:57:57.193 ... : drop table teammate if exists
2014-07-24 21:57:57.194 ... : create table team (id bigint
generated by defaul...
2014-07-24 21:57:57.197 ... : create table teammate (id bigint
generated by de...
2014-07-24 21:57:57.199 ... : alter table teammate add
constraint FK_qy82oywog...
2014-07-24 21:57:57.205 ... : HHH000230: Schema export
complete
2014-07-24 21:57:57.454 ... : insert into team (id, name)
values (null, ?)
2014-07-24 21:57:57.471 ... : insert into teammate (id,

first_name, last_name,...
2014-07-24 21:57:57.473 ... : insert into teammate (id,
first_name, last_name,...
2014-07-24 21:57:57.474 ... : insert into teammate (id,
first_name, last_name,...
2014-07-24 21:57:57.578 ... : select teammate0_.id as id1_1_,
teammate0_.first...
2014-07-24 21:57:57.586 ... : select team0_.id as id1_0_0_,
team0_.name as nam...
2014-07-24 21:57:57.593 ... : 1: Greg Turnquist is playing 2nd
base for the Sp...
2014-07-24 21:57:57.593 ... : 2: Roy Clarkson is playing 1st
base for the Spri...
2014-07-24 21:57:57.593 ... : 3: Phil Webb is playing pitcher
for the Spring B...
2014-07-24 21:57:57.762 ... : Registering beans for JMX
exposure on startup
2014-07-24 21:57:57.782 ... : Started Application in 2.435
seconds (JVM runnin...
2014-07-24 21:57:57.784 ... : Closing
org.springframework.context.annotation.A...
2014-07-24 21:57:57.785 ... : Unregistering JMX-exposed beans
on shutdown
2014-07-24 21:57:57.787 ... : Closing JPA EntityManagerFactory
for persistence...
2014-07-24 21:57:57.788 ... : HHH000227: Running hbm2ddl
schema export
2014-07-24 21:57:57.789 ... : alter table teammate drop
constraint FK_qy82oywo...
2014-07-24 21:57:57.790 ... : drop table team if exists
2014-07-24 21:57:57.792 ... : drop table teammate if exists
2014-07-24 21:57:57.793 ... : HHH000230: Schema export
complete

This looks very similar to the previous output. The key differences are that
instead of seeing Executing SQL script, we see insert into team and
insert into teammate.

With these two scenarios (the Loading data using a SQL script section versus
the Loading data programmatically section), the choice you make comes
down to taste. Programmatically loading data takes up more space, but it
ensures that things are being created in compliance with the defined APIs. SQL

is much more explicit about what is happening, but it requires that we manage
all the primary and foreign keys correctly. SQL is also more compact.

Tip

Am I forced to make a global decision about using SQL or Spring Data to
insert data? Not really. For general development, you can write a SQL script.
However, for specific unit tests, you might insert data using Spring Data
repositories. Or you might wish to do things the other way around. It comes
down to what you and your team prefer.

Adding a production profile for a
MySQL database
So far, we've built a pretty simple system. It bootstraps an in-memory
database, preloads a team with three players, and then gives us a printout of the
roster on the console. So, what happens when it's time to deploy this into
production? There are several issues with using an in-memory database when
it comes to production, and these issues are listed as follows:

An in-memory database isn't persistent across restarts.
By default, Spring Boot configures H2 to create-drop the database. This
means that the database is wiped and reloaded every time.
The production database server most certainly is not running on our
desktop. We have to tell Spring Boot where to connect and how.
It's possible that we the developers won't even be granted access to the
database credentials. How do we handle that?

We could scrap all the settings used up to this point, but that would destroy
valuable work. It would also hinder our ability to continue working on the app
in the development mode. The solution is to use Spring's environmental
profiles.

For starters, assuming our production database is MySQL, let's add MySQL's
JDBC library to our list of dependencies in build.gradle:

compile("mysql:mysql-connector-java")

Tip

The mysql-connector-java package is another third-party dependency
where the version number is supplied by Spring Boot.

If we ran Application.main right now, nothing would change. Spring Boot is
hardwired so that if it spots H2 (or HSQL or Derby) it will run things in an
embedded, development mode. Spring Boot will automatically create
connectors for the in-memory database and also set it to the create-drop

mode. This is good, because it will let us continue working in the development
mode until we make some clear changes.

The next step toward a production configuration is to create
src/main/resources/application-production.properties, which is
shown as follows:

spring.jpa.hibernate.ddl-auto=none

spring.datasource.url=jdbc:mysql://localhost/your-db-name
spring.datasource.username=your-user-name
spring.datasource.password=your-password
spring.datasource.driverClassName=com.mysql.jdbc.Driver

Note

You must plug in your own connection URL and username/password.

There are several things happening here:

We named it application-production.properties to indicate that
this property file is only loaded by Spring Boot when
spring.profiles.active contains production
The spring.jpa.hibernate.ddl-auto property is set to none, which
means that it will do nothing about creating the schema or dropping tables
when the app finishes
The spring.datasource properties contain the necessary settings so that
Hibernate can connect
Note

Hibernate's ddl-auto options are: none, validate, update, and
create-drop. create-drop is the default setting for H2, HSQL, and Derby
databases. For anything else, Spring Boot defaults to none.

What are Spring profiles? Spring makes it easy to segregate the creation
of beans based on custom profile settings. Individual beans or entire
collections of bean definitions can be flagged to only work based on the
profile that is active. Spring Boot dials this up further by supporting
application-${profile}.properties files that are only tapped in a

similar fashion. For a more in-depth tutorial, read
http://spring.io/blog/2011/02/14/spring-3-1-m1-introducing-profile (note
that the blog entry is pre-Spring Boot).

The following change must be made to DatabaseLoader:

@Service
@Profile("!production")
public class DatabaseLoader {

The @Profile annotation indicates that the DatabaseLoader class will only
activate and begin initializing the database if Spring is not running with the
production profile.

One other change inside Application is in order:

@Autowired(required = false)
DatabaseLoader databaseLoader;

We previously autowired DatabaseLoader to ensure that the data was loaded
before trying to print out the roster. However, if we are running in the
production mode, this bean wouldn't have been created. So we mark it as
(required = false).

With these handful of changes to our app, we can run Application.main
again from inside our IDE. It should run fine (assuming we installed and
launched a standalone MySQL database).

A key indicator that things are running in the development mode inside our IDE
is when we see Using dialect: org.hibernate.dialect.H2Dialect in
the output. This indicates that it is running H2, the embedded database.
Furthermore, we should see the same roster printed out as the one we saw
earlier in this chapter.

Now, if we run our app from the console and turn on the production profile,
we should see something like this:

$ SPRING_PROFILES_ACTIVE=production ./gradlew bootRun
...

http://spring.io/blog/2011/02/14/spring-3-1-m1-introducing-profile

 . ____ _
\ ___' _(_) _ _ \ \ \ \
(()__ | ' | '_| | ' \/ ' | \ \ \ \
\\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, |
=========|_|==============|___/=/_/_/_/
:: Spring Boot :: (v1.1.6.RELEASE)

2014-07-24 23:04:14.679 ... : Starting Application on retina
with PID 4217 (/U...
2014-07-24 23:04:14.708 ... : Refreshing
org.springframework.context.annotatio...
2014-07-24 23:04:15.438 ... : Building JPA container
EntityManagerFactory for ...
2014-07-24 23:04:15.458 ... : HHH000204: Processing
PersistenceUnitInfo [
 name: default
 ...]
2014-07-24 23:04:15.511 ... : HHH000412: Hibernate Core
{4.3.5.Final}
2014-07-24 23:04:15.513 ... : HHH000206: hibernate.properties
not found
2014-07-24 23:04:15.514 ... : javassist
2014-07-24 23:04:15.623 ... : HCANN000001: Hibernate Commons
Annotations {4.0....
2014-07-24 23:04:15.964 ... : HHH000400: Using dialect:
org.hibernate.dialect.MySQL5Dialect
2014-07-24 23:04:16.130 ... : HHH000397: Using
ASTQueryTranslatorFactory
2014-07-24 23:04:16.754 ... : select teammate0_.id as id1_1_,
teammate0_.first...
2014-07-24 23:04:16.774 ... : SQL Error: 1146, SQLState: 42S02
2014-07-24 23:04:16.775 ... : Table 'test.teammate' doesn't
exist
2014-07-24 23:04:16.780 ... : Closing JPA EntityManagerFactory
for persistence...
2014-07-24 23:04:16.783 ... : Application failed to start with
classpath: [fil...

First of all, we can see that the app is trying to talk to a MySQL database
because of this: Using dialect:
org.hibernate.dialect.MySQL5Dialect.

However, something went terribly wrong! According to the last message
shown in the preceding output, the application had a failure on startup. Digging
in, we find that Table 'test.teammate' doesn't exist is the first clue.
Further along in the output (and not shown in the preceding output due to format
restrictions), this becomes clear when we see
org.hibernate.exception.SQLGrammarException: could not extract

ResultSet. It appears that the app tried to query a table that doesn't exist.

This is what happens if you run the application in the production mode but
don't initialize the database with the schema and sample data.

Note

This scenario is highly unlikely. Either you or your DBA will have most likely
built and run some script to set up the database properly.

Instead of writing a separate script, let's simply switch
spring.jpa.hibernate.ddl-auto to update and comment out
@Profile("!production") from DatabaseLoader. Then run the app again:

$ SPRING_PROFILES_ACTIVE=production ./gradlew bootRun
...
 . ____ _
\ ___' _(_) _ _ \ \ \ \
(()__ | ' | '_| | ' \/ ' | \ \ \ \
\\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, |
=========|_|==============|___/=/_/_/_/
:: Spring Boot :: (v1.1.6.RELEASE)

2014-07-24 23:35:53.930 ... : Starting Application on retina
with PID 5191 (/U...
2014-07-24 23:35:53.960 ... : Refreshing
org.springframework.context.annotatio...
2014-07-24 23:35:54.709 ... : Building JPA container
EntityManagerFactory for ...
2014-07-24 23:35:54.726 ... : HHH000204: Processing
PersistenceUnitInfo [
 name: default
 ...]
2014-07-24 23:35:54.781 ... : HHH000412: Hibernate Core

{4.3.5.Final}
2014-07-24 23:35:54.782 ... : HHH000206: hibernate.properties
not found
2014-07-24 23:35:54.783 ... : javassist
2014-07-24 23:35:54.900 ... : HCANN000001: Hibernate Commons
Annotations {4.0....
2014-07-24 23:35:55.246 ... : HHH000400: Using dialect:
org.hibernate.dialect....
2014-07-24 23:35:55.424 ... : HHH000397: Using
ASTQueryTranslatorFactory
2014-07-24 23:35:55.653 ... : HHH000228: Running hbm2ddl
schema update
2014-07-24 23:35:55.653 ... : HHH000102: Fetching database
metadata
2014-07-24 23:35:55.654 ... : HHH000396: Updating schema
2014-07-24 23:35:55.658 ... : HHH000262: Table not found: team
2014-07-24 23:35:55.659 ... : HHH000262: Table not found:
teammate
2014-07-24 23:35:55.660 ... : HHH000262: Table not found: team
2014-07-24 23:35:55.660 ... : HHH000262: Table not found:
teammate
2014-07-24 23:35:55.661 ... : HHH000262: Table not found: team
2014-07-24 23:35:55.662 ... : HHH000262: Table not found:
teammate
2014-07-24 23:35:55.753 ... : HHH000232: Schema update
complete
2014-07-24 23:35:56.086 ... : insert into team (name) values
(?)
2014-07-24 23:35:56.116 ... : insert into teammate
(first_name, last_name, pos...
2014-07-24 23:35:56.119 ... : insert into teammate
(first_name, last_name, pos...
2014-07-24 23:35:56.122 ... : insert into teammate
(first_name, last_name, pos...
2014-07-24 23:35:56.221 ... : select teammate0_.id as id1_1_,
teammate0_.first...
2014-07-24 23:35:56.226 ... : select team0_.id as id1_0_0_,
team0_.name as nam...
2014-07-24 23:35:56.235 ... : 1: Greg Turnquist is playing 2nd
base for the Sp...
2014-07-24 23:35:56.236 ... : 2: Roy Clarkson is playing 1st
base for the Spri...
2014-07-24 23:35:56.236 ... : 3: Phil Webb is playing pitcher
for the Spring B...

2014-07-24 23:35:56.355 ... : Registering beans for JMX
exposure on startup
2014-07-24 23:35:56.367 ... : Started Application in 2.62
seconds (JVM running...
2014-07-24 23:35:56.368 ... : Closing
org.springframework.context.annotation.A...
2014-07-24 23:35:56.369 ... : Unregistering JMX-exposed beans
on shutdown
2014-07-24 23:35:56.371 ... : Closing JPA EntityManagerFactory
for persistence...

The preceding console output shows us clear evidence of the database
structure being created as well as data being inserted:

Updating schema

Schema update complete

insert into team (name) values (?)

insert into teammate…

Note

This is quite handy. So why did we set things up with ddl-auto: none in
the first place? Because in all likelihood, a real production database
would have been created outside the scope of our application. This is in
this book primarily for demonstration purposes.

To continue with this chapter's teammate app, we can switch to the preferred
setting of ddl-auto: none now that we have configured the table structure. To
do this, we must revert those last edits to application-
production.properties and DatabaseLoader.java. If we run things again,
we should see the following in our console output:

...
2014-07-24 23:40:30.454 ... : HHH000400: Using dialect:
org.hibernate.dialect....
2014-07-24 23:40:30.643 ... : HHH000397: Using
ASTQueryTranslatorFactory
2014-07-24 23:40:31.177 ... : select teammate0_.id as id1_1_,
teammate0_.first...
2014-07-24 23:40:31.297 ... : select team0_.id as id1_0_0_,
team0_.name as nam...

2014-07-24 23:40:31.316 ... : 1: Greg Turnquist is playing 2nd
base for the Sp...
2014-07-24 23:40:31.316 ... : 2: Roy Clarkson is playing 1st
base for the Spri...
2014-07-24 23:40:31.316 ... : 3: Phil Webb is playing pitcher
for the Spring B...
...

We are now able to query a functioning, production-grade database. There are
no table creation operations at the beginning and no table dropping at the end.
Instead, we simply connect to the system and run our query, fetching the team
roster.

Note

This chapter isn't going to dive into the details of migrating database schemas
as you evolve your application. Instead, you can read
http://docs.spring.io/spring-
boot/docs/1.1.6.RELEASE/reference/htmlsingle/#howto-use-a-higher-level-
database-migration-tool to see how Spring Boot supports both Flyway
(http://flywaydb.org) and Liquibase (http://www.liquibase.org).

http://docs.spring.io/spring-boot/docs/1.1.6.RELEASE/reference/htmlsingle/#howto-use-a-higher-level-database-migration-tool
http://flywaydb.org
http://www.liquibase.org

Adding Spring Data REST and
using it to manage teammates
So far, this application has provided us with a nice API that creates and
manages teammates. However, we haven't built any UI. We could start crafting
a classic server-side solution by creating some templates that perform various
CRUD operations. But a more modern solution would be to create a RESTful
frontend that can be used to create an independent UI.

Why is is better to decouple the frontend from the backend? Let's find out:

For starters, the frontend and backend can have different rates of change
and different technology stacks, and can be supported by different pools
of developer talent.
Decoupling the frontend from the backend introduces the option to have a
web frontend, an iOS frontend, and an Android frontend (and others).
Managing three frontends and a backend with one team can generate many
unintended side effects in the architecture. Decoupling forces everyone to
assess changes that cross these boundaries.
As a bonus, such decoupling opens the door to third-party companies that
build clients to interact with our backend in a fashion that can be
monetized.

Spring MVC has had RESTful support since Spring 3.0. We could create our
RESTful API by hand, but it would be labor-intensive. Instead, we can use
Spring Data REST to export our repositories automatically.

To get started, we only have to add spring-boot-starter-data-rest to our
list of dependencies in build.gradle:

compile("org.springframework.boot:spring-boot-starter-data-
rest")

This starter will pull in critical parts required to build RESTful services, as
shown in the following table:

Module Description

Spring Web
MVC Contains Spring REST components

Spring
HATEOAS

Supplements Spring's REST support with hypermedia
(http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven)

Jackson 2 JSON serialization and deserialization library

Note

What is HATEOAS? Apart from being an acronym with a dozen
pronunciations, it stands for Hypermedia As The Engine Of Application
State. It was documented in Roy Fielding's PhD dissertation, which is where
REST was born. Another expression for HATEOAS is hypermedia. Spring
HATEOAS makes it super simple to generate hypermedia links to Spring MVC
endpoints and serve them up to end users.

With this small addition to our dependencies, Spring Boot will automatically
export all repository interfaces. If we launch Application.main in the
development mode (not production mode), we can see the following console
output:

$./gradlew bootRun
...
2014-08-01 22:48:13.966 ... : create table team (id bigint
generated by defaul...
2014-08-01 22:48:13.970 ... : create table teammate (id bigint
generated by de...
2014-08-01 22:48:13.971 ... : alter table teammate add
constraint FK_qy82oywog...
2014-08-01 22:48:13.978 ... : HHH000230: Schema export
complete
2014-08-01 22:48:14.636 ... : Mapping servlet:
'dispatcherServlet' to [/]
2014-08-01 22:48:14.640 ... : Mapping filter:
'hiddenHttpMethodFilter' to: [/*]
2014-08-01 22:48:14.820 ... : insert into team (id, name)
values (null, ?)

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

2014-08-01 22:48:14.843 ... : insert into teammate (id,
first_name, last_name,...
2014-08-01 22:48:14.846 ... : insert into teammate (id,
first_name, last_name,...
2014-08-01 22:48:14.848 ... : insert into teammate (id,
first_name, last_name,...
2014-08-01 22:48:14.968 ... : select teammate0_.id as id1_1_,
teammate0_.first...
2014-08-01 22:48:14.976 ... : select team0_.id as id1_0_0_,
team0_.name as nam...
2014-08-01 22:48:14.984 ... : 1: Greg Turnquist is playing 2nd
base for the Sp...
2014-08-01 22:48:14.984 ... : 2: Roy Clarkson is playing 1st
base for the Spri...
2014-08-01 22:48:14.984 ... : 3: Phil Webb is playing pitcher
for the Spring B...
...
2014-08-01 22:48:15.404 ... : Mapped "{[{repository}
{id}/{property}],methods...
2014-08-01 22:48:15.404 ... : Mapped "{[{repository}
{id}/{property}/{propert...
2014-08-01 22:48:15.405 ... : Mapped "{[{repository}
{id}/{property}],methods...
2014-08-01 22:48:15.405 ... : Mapped "{[{repository}
{id}/{property}],methods...
2014-08-01 22:48:15.405 ... : Mapped "{[{repository}
{id}/{property}],methods...
2014-08-01 22:48:15.405 ... : Mapped "{[{repository}
{id}/{property}/{propert...
2014-08-01 22:48:15.406 ... : Mapped "
{[{repository}schema],methods=[GET],pa...
2014-08-01 22:48:15.409 ... : Mapped "
{[/{repository}],methods=[GET],params=[]...
2014-08-01 22:48:15.409 ... : Mapped "
{[/{repository}],methods=[HEAD],params=[...
2014-08-01 22:48:15.410 ... : Mapped "
{[/{repository}],methods=[GET],params=[]...
2014-08-01 22:48:15.410 ... : Mapped "
{[/{repository}],methods=[POST],params=[...
2014-08-01 22:48:15.410 ... : Mapped "{[{repository}
{id}],methods=[HEAD],par...
2014-08-01 22:48:15.410 ... : Mapped "{[{repository}
{id}],methods=[GET],para...

2014-08-01 22:48:15.410 ... : Mapped "{[{repository}
{id}],methods=[PUT],para...
2014-08-01 22:48:15.411 ... : Mapped "{[{repository}
{id}],methods=[PATCH],pa...
2014-08-01 22:48:15.411 ... : Mapped "{[{repository}
{id}],methods=[DELETE],p...
2014-08-01 22:48:15.412 ... : Mapped "{[/],methods=
[GET],params=[],headers=[],...
2014-08-01 22:48:15.413 ... : Mapped "
{[{repository}search],methods=[GET],pa...
2014-08-01 22:48:15.414 ... : Mapped "
{[{repository}search],methods=[HEAD],p...
2014-08-01 22:48:15.414 ... : Mapped "
{[{repository}search/{search}],methods...
2014-08-01 22:48:15.414 ... : Mapped "
{[{repository}search/{search}],methods...
2014-08-01 22:48:15.414 ... : Mapped "
{[{repository}search/{search}],methods...
2014-08-01 22:48:15.470 ... : Registering beans for JMX
exposure on startup
2014-08-01 22:48:15.565 ... : Tomcat started on port(s):
8080/http
2014-08-01 22:48:15.567 ... : Started Application in 5.539
seconds (JVM runnin...

The preceding console output shows us the same creation of the Spring Boot
Badgers and its players. However, it creates additional Spring MVC
endpoints. The endpoints are heavily parameterized (/{repository},
{repository}{id}, {repository}{id}/{property}, and so on.).

Instead of decrypting all these new endpoints shown on the console, we can
investigate using a REST client instead. For any *nix or Mac machine, curl on
the command line is quite useful:

$ curl -i localhost:8080
HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: application/hal+json
Transfer-Encoding: chunked
Date: Sat, 02 Aug 2014 03:58:02 GMT

{

 "_links" : {
 "teams" : {
 "href" : "http://localhost:8080/teams"
 },
 "teammates" : {
 "href" : "http://localhost:8080/teammates"
 }
 }
}

What is this output we are seeing? According to Content-Type, its media type
is application/hal+json. This media type is found in the HAL specification
(http://tools.ietf.org/html/draft-kelly-json-hal-06). As stated by the author of
the HAL spec, Adopting HAL will make your API explorable, and its
documentation easily discoverable from within the API itself. HAL basically
includes links to other resources stored in an adjacent entry called _links
with logical names known as rels (relationships).

The preceding output has two rels, which are teams and teammates.

Tip

For RESTful services, it's important to not get hung up on the URI of various
parts of an API. These can change. Instead, we should navigate by way of
relationships.

Let's look up teams first. The previous document tells us that to find all teams,
we must navigate to its related link as follows:

$ curl -i localhost:8080/teams
{
 "_embedded" : {
 "teams" : [{
 "name" : "Spring Boot Badgers",
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/teams/1"
 },
 "members" : {
 "href" : "http://localhost:8080/teams/1/members"

http://tools.ietf.org/html/draft-kelly-json-hal-06

 }
 }
 }]
 }
}

Let's walk through this preceding HAL document:

_embedded: This is used for embedded resources. Spring Data REST
uses it to serve up collections.
teams: This is the resource we seek. It's an array with one entry for the
Spring Boot Badgers.
name: This is a property found inside Team.
_links: This shows us a list of related links.
self: A standard resource includes a link to itself. This is the RESTful
equivalent of Java's this keyword.
members: This is a link from Team that shows us members related to this
team.

Note

For more details about Spring Data REST, check out my presentation at
SpringOne 2014 at http://www.infoq.com/presentations/spring-data-rest.
For the corresponding slide deck, see
https://speakerdeck.com/gregturn/springone2gx-2014-spring-data-rest-
data-meets-hypermedia.

So, let's look up Spring Boot Badgers with the following command:

$ curl localhost:8080/teams/1
{
 "name" : "Spring Boot Badgers",
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/teams/1"
 },
 "members" : {
 "href" : "http://localhost:8080/teams/1/members"
 }
 }

http://www.infoq.com/presentations/spring-data-rest
https://speakerdeck.com/gregturn/springone2gx-2014-spring-data-rest-data-meets-hypermedia

}

This appears almost identical to the previous HAL document. The only
difference is that this isn't embedded data. If there were more teams, the
previous HAL document would have listed them all. However, this most recent
HAL document shows us only one particular team. Naturally, it has the same
data.

What's more interesting is how we can use this resource's hypermedia to find
the related members, as follows:

$ curl localhost:8080/teams/1/members
{
 "_embedded" : {
 "teammates" : [{
 "firstName" : "Greg",
 "lastName" : "Turnquist",
 "position" : "2nd base",
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/teammates/1"
 },
 "team" : {
 "href" : "http://localhost:8080/teammates/1/team"
 }
 }
 }, {
 "firstName" : "Roy",
 "lastName" : "Clarkson",
 "position" : "1st base",
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/teammates/2"
 },
 "team" : {
 "href" : "http://localhost:8080/teammates/2/team"
 }
 }
 }, {
 "firstName" : "Phil",
 "lastName" : "Webb",
 "position" : "pitcher",

 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/teammates/3"
 },
 "team" : {
 "href" : "http://localhost:8080/teammates/3/team"
 }
 }
 }]
 }
}

In the preceding console output, we see our familiar teammates Greg, Roy, and
Phil. Their attributes are served up along with a self link and a team link.

We can navigate every last link, but we've already seen all the data the current
data model contains. It would be much more interesting to create new data.
Let's kick things off by creating a new player, shown as follows:

$ curl -i -X POST -H 'Content-Type:application/json' -d
'{"firstName":"Dave", "lastName":"Syer",
"position":"catcher"}' localhost:8080/teammates
HTTP/1.1 201 Created
Server: Apache-Coyote/1.1
Location: http://localhost:8080/teammates/4
Content-Length: 0
Date: Sat, 02 Aug 2014 04:33:39 GMT

This command has several arguments, which are detailed as follows:

-i: This shows us all the response headers
-X POST: This switches from curl's default GET to POST to create a new
resource
-H 'Content-Type:application/json': This shows that data sent
over the wire to the server is JSON
-d '{"firstName":"Dave", "lastName":"Syer",

"position":"catcher"}': This is the JSON representation of a new
resource
localhost:8080/teammates: This is the resource to use for creating
new Teammate resources

Location: http://localhost:8080/teammates/4: This is the
response header that indicates where the newly created resource can be
found

Given the Location header, let's look up our new resource:

$ curl localhost:8080/teammates/4
{
 "firstName" : "Dave",
 "lastName" : "Syer",
 "position" : "catcher",
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/teammates/4"
 },
 "team" : {
 "href" : "http://localhost:8080/teammates/4/team"
 }
 }
}

Everything appears to be in order. We can see the name and position that was
provided through the POST request earlier.

What can we expect to find if we check on the new teammate's team? Take a
look:

$ curl -i http://localhost:8080/teammates/4/team
HTTP/1.1 404 Not Found
Server: Apache-Coyote/1.1
Content-Length: 0
Date: Sat, 02 Aug 2014 04:43:21 GMT

The 404 Not Found response code matches the fact that we haven't associated
our new teammate with any team. If we want to alter the record, we have two
choices: PUT or PATCH.

Note

PUT (http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.6) is
used to replace an entire resource. PATCH (http://tools.ietf.org/html/rfc5789)

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.6
http://tools.ietf.org/html/rfc5789

is used to update parts of a resource. For any attributes not specified with a
PUT, Spring Data REST will replace them with null. For a PATCH, Spring
Data REST ignores unspecified attributes.

Let's assign Dave to the Spring Boot Badgers with the following command:

$ curl -i -X PUT -H 'Content-Type:text/uri-list' -d
http://localhost:8080/teams/1 localhost:8080/teammates/4/team
HTTP/1.1 204 No Content
Server: Apache-Coyote/1.1

We can see a 204 No Content response in the preceding console output. This
indicates that the operation was successful, but there is simply no other data to
send back.

Note

As mentioned previously, PATCH updates parts of a resource while PUT
completely replaces a resource. You might think that changing a relationship
would require using a PATCH, but the semantics are that we are replacing the
whole team relationship, so we must use PUT.

After performing the update, let's check Dave's team link, shown as follows:

$ curl localhost:8080/teammates/4/team
{
 "name" : "Spring Boot Badgers",
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/teams/1"
 },
 "members" : {
 "href" : "http://localhost:8080/teams/1/members"
 }
 }
}

Previously, we saw 404 Not Found. Now, we can see that Dave is a member
of the Spring Boot Badgers. To double-check, it's left as an exercise to look up
the members of the team and confirm that Dave is now listed.

To show how to alter a property that isn't a relationship, let's change Dave's
position from catcher to short stop:

$ curl -i -X PATCH -H "Content-Type:application/json" -d
'{"position":"short stop"}' localhost:8080/teammates/4
HTTP/1.1 204 No Content
Server: Apache-Coyote/1.1
Date: Sun, 03 Aug 2014 02:30:04 GMT

Using curl, the preceding command sent a PATCH request with an updated
team position. The server responded with 204 No Content, again indicating
success but with no extra data.

To see the results, look at the following command:

$ curl localhost:8080/teammates/4
{
 "firstName" : "Dave",
 "lastName" : "Syer",
 "position" : "short stop",
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/teammates/4"
 },
 "team" : {
 "href" : "http://localhost:8080/teammates/4/team"
 }
 }
}

The output clearly shows us that we successfully updated Dave to the position
of short stop.

Note

You might have noticed that the entity's id field is not displayed. This is
because such a field is internal to the database and not subject to RESTful
interactions. The self link of an entity is its canonical reference. Why do we
need self? We might have reached the resource through different
relationships. This is the resource's proper identity free of relational context.

As a final step, what if Roy decided to move out of the area and leave our
network of teammates? We can easily delete him using the following DELETE
command:

$ curl -i -X DELETE localhost:8080/teammates/2
HTTP/1.1 204 No Content
Server: Apache-Coyote/1.1
Date: Sun, 03 Aug 2014 02:45:02 GMT

$ curl -i localhost:8080/teammates/2
HTTP/1.1 404 Not Found
Server: Apache-Coyote/1.1
Content-Length: 0
Date: Sun, 03 Aug 2014 02:45:20 GMT

The console output shows us how we executed the DELETE command. We again
got a 204 HTTP status code, indicating success. Performing another GET for
the same URI shows a 404 error, indicating it no longer exists, as expected.

So, what have we accomplished? We created a RESTful service using Spring
Data REST. We didn't have to define Spring view resolvers, message
converters, MVC endpoints, hypermedia links, backend database
manipulations, and much more. By not having to work on building the
endpoints as well as the hypermedia links, we can focus our efforts on a
sophisticated frontend instead. There are, in fact, many useful libraries that
speak HATEOAS as well as HAL, such as CujoJS's REST library
(https://github.com/cujojs/rest).

Note

For reasons of space, we won't build a UI in this chapter. To see an example
that demonstrates Spring Data REST combined with a JavaScript frontend,
check out Spring-a-Gram (https://github.com/gregturn/spring-a-gram).

https://github.com/cujojs/rest
https://github.com/gregturn/spring-a-gram

Reconfiguring our app to use Spring
Data MongoDB
Up until this point, we have used two relational databases to craft a teammate
management app. To wrap up this chapter, we'll investigate how easy it is to
retool our app to use MongoDB.

Note

To install MongoDB on your development machine, downloads are available
at http://www.mongodb.org/downloads. Assuming that you have installed
MongoDB and started it, proceed with the rest of this section. As a side note,
anecdotal evidence suggests that it is important to install the 64-bit version of
MongoDB to reduce the risk of data drops in case your data set grows big.

To start things off, we need to revise build.gradle so that it contains the
following list of dependencies:

dependencies {
 compile("org.springframework.boot:springboot-starter-data-
mongodb")
 compile("org.springframework.boot:springboot-starter-data-
rest")
}

Using springboot-starter-data-mongodb and springboot-starter-
data-rest, we will nicely set things up to create a simple app. It's important
to note that H2 and MySQL dependencies have been removed. There is no
practical reason to use a relational database in development and MongoDB in
production. Instead, we can run a tiny MongoDB server on our development
workstation while hosting a bigger, more fault-tolerant system in production.
We'll see later in this section how to switch between the two.

The following section shows a tweaked snippet of our Team domain object:

import org.springframework.data.annotation.Id;
import org.springframework.data.mongodb.core.mapping.DBRef;

http://www.mongodb.org/downloads

import org.springframework.data.mongodb.core.mapping.Document;

@Document()
public class Team {

 @Id
 private BigInteger id;

 private String name;

 @DBRef
 private List<Teammate> members;

The domain object has the same attributes, but there are a few changes, which
are listed as follows:

The javax.persistence imports have been replaced by
org.springframework.data imports.
The class itself is tagged by the @Document annotation. This annotation is
not technically required, but it provides nice documentation. The default
name of the collection is the name of the class changed to start with a
lowercase letter. The @Document annotation has a parameter that changes
the name of the collection, if desired.
The id attribute is now annotated by Spring Data Commons' @Id
annotation. It has also been changed from Long to BigInteger. (Spring
Data MongoDB supports BigInteger, String, and ObjectId for
autogenerated ID values.)
The members attributes have been changed from @OneToMany to @DBRef.
The @DBRef annotation indicates that the collection is stored in a separate
MongoDB collection instead of being nested directly inside teams.
Nonetheless, any access to this attribute will render data as if the
teammates were stored directly inside its team.

Looking at our other domain object, which is Teammate, we can see the same
alterations as follows:

import org.springframework.data.annotation.Id;
import org.springframework.data.mongodb.core.mapping.Document;

@Document

public class Teammate {

 @Id
 private BigInteger id;

 private String firstName;
 private String lastName;
 private String position;

 private BigInteger teamId;

There is one key difference shown in the preceding code: the @ManyToOne
Team team attribute has been replaced with BigInteger teamId. Why was
this necessary? MongoDB doesn't directly support bidirectional relationships,
nor does it have joins. If we tried to plug in @DBRef Team team, any attempt
to access a given teammate will result in a stack overflow due to the circular
loop that cross-linking would generate. A common way of hedging this
circumstance is to manually maintain a copy of the ID, which is what we are
doing.

Due to the change of ID types from Long to BigInteger, we are forced to
slightly alter our repositories. Thankfully, that's all we need to edit,
considering they are already decoupled from any JPA specifics:

public interface TeamRepository extends CrudRepository<Team,
BigInteger> {}

The only line that changed is shown in the preceding line. This was applied to
our TeammateRepository as well:

public interface TeammateRepository extends
CrudRepository<Teammate, BigInteger> {}

This preceding repository also shows us moving from Long to BigInteger.
Apart from this, Spring Data conveniently lets us shift to MongoDB with little
effort, as we'll soon discover. Another part of these slight alterations is our
development environment loader, shown as follows:

package learningspringboot;

import javax.annotation.PostConstruct;

import java.util.Arrays;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Profile;
import org.springframework.stereotype.Service;

@Service
@Profile("!production")
public class DatabaseLoader {

 private final TeammateRepository teammateRepository;
 private final TeamRepository teamRepository;

 @Autowired
 public DatabaseLoader(TeammateRepository
teammateRepository, TeamRepository teamRepository) {
 this.teammateRepository = teammateRepository;
 this.teamRepository = teamRepository;
 }

 @PostConstruct
 private void initDatabase() {
 teamRepository.deleteAll();
 teammateRepository.deleteAll();

 Team springBootTeam = new Team("Spring Boot Badgers");
 teamRepository.save(springBootTeam);

 Teammate greg = new Teammate("Greg", "Turnquist");
 greg.setPosition("2nd base");
 greg.setTeamId(springBootTeam.getId());
 teammateRepository.save(greg);

 Teammate roy = new Teammate("Roy", "Clarkson");
 roy.setPosition("1st base");
 roy.setTeamId(springBootTeam.getId());
 teammateRepository.save(roy);

 Teammate phil = new Teammate("Phil", "Webb");
 phil.setPosition("pitcher");
 phil.setTeamId(springBootTeam.getId());
 teammateRepository.save(phil);

 springBootTeam.setMembers(Arrays.asList(new Teammate[]

{greg, roy, phil}));
 teamRepository.save(springBootTeam);
 }

}

As was the case previously, the DatabaseLoader code is not JPA-specific. It
leans on the Spring Data Commons standard API for POJO persistence. This
code is still profiled to get activated only if we are not running in a
production profile. It also loads up copies of the repositories automatically.
The differences are in the initDatabase method as follows:

As MongoDB persists data between runs, we first need to use deleteAll
for both repositories. Otherwise, we'll add new entries every time. This
operation is something that should never be used in production, but it's
perfect for development.
Previously, each teammate performed setTeam(springBootTeam). This
has been replaced with setTeamId(springBootTeam.getId()). Note
that we also added getId to Team in order to support this operation.
Finally, the one-to-many relationship has to be set up on the team side as
well. The setMembers(…) method followed by
teamRepository.save(springBootTeam) is required to create this
linkage on the team side of things.

In the previous version of our app, we had application-
production.properties contain production-specific configuration settings.
In general, we don't need this file anymore for the following reasons:

Data is persistent between restarts. When we run with
SPRING_PROFILES_ACTIVE=production, the DatabaseLoader class
won't be invoked to prevent data reloads.
MongoDB is a schema-less system, so the
spring.jpa.hibernate.ddl-auto property that let us declare create-
drop, validate and none is not needed.

The exception would be if our production MongoDB configuration is different
from the default configuration. If we get into replication
(http://docs.mongodb.org/manual/core/replication-introduction/)

or sharding (http://docs.mongodb.org/manual/core/sharding-
introduction/), we might very well have to change the connection URI and
port. While we won't go into such advanced configuration details here, the
following settings are pluggable straight from Spring Boot:

spring.data.mongodb.host= # the db host
spring.data.mongodb.port=27017 # the connection port
spring.data.mongodb.uri=mongodb://localhost/test # connection
URL
spring.data.mongo.repositories.enabled=true # if SD enabled

This listing shows us the default values Spring Boot uses with Spring Data
MongoDB. However, we can easily override these values in an
application-${profile}.properties file for more advanced options.

Note

Simply having springboot-starter-data-mongodb is enough to switch on
spring.data.mongo.repositories.enabled.

As the final step of cleanup, it's advisable to remove the hibernate logger
setting from logback.xml, as follows:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <include
resource="org/springframework/boot/logging/logback/base.xml">
 <logger name="org.springframework.data.rest"
level="DEBUG">
</configuration>

This is again set up with Spring Boot's default log settings while adding debug
logging for Spring Data REST.

Running our MongoDB-based app
With these changes, we can rerun our app in the development mode:

$./gradlew bootRun
...
2014-08-03 23:46:26.938 ... : Server initialized with port:
8080
2014-08-03 23:46:27.118 ... : Starting service Tomcat
2014-08-03 23:46:27.119 ... : Starting Servlet Engine: Apache
Tomcat/7.0.54
2014-08-03 23:46:27.234 ... : Initializing Spring embedded
WebApplicationContext
2014-08-03 23:46:27.234 ... : Root WebApplicationContext:
initialization compl...
2014-08-03 23:46:28.548 ... : Mapping servlet:
'dispatcherServlet' to [/]
2014-08-03 23:46:28.551 ... : Mapping filter:
'hiddenHttpMethodFilter' to: [/*]
2014-08-03 23:46:28.759 ... : 25956922498352330232492568383:
Greg Turnquist is...
2014-08-03 23:46:28.759 ... : 25956922498352330232492568384:
Roy Clarkson is p...
2014-08-03 23:46:28.759 ... : 25956922498352330232492568385:
Phil Webb is play...
...

The preceding console output has been trimmed to show that our teammates—
Greg, Roy, and Phil—have very different IDs. They are big integers.
Everything else was the same, so it was cut out for space reasons.

We can query for the list of teams again, shown as follows:

$ curl localhost:8080/teams
{
 "_embedded" : {
 "teams" : [{
 "id" : 25956922498352330232492568382,
 "name" : "Spring Boot Badgers",
 "members" : [{
 "firstName" : "Greg",

 "lastName" : "Turnquist",
 "position" : "2nd base",
 "teamId" : 25956922498352330232492568382
 }, {
 "firstName" : "Roy",
 "lastName" : "Clarkson",
 "position" : "1st base",
 "teamId" : 25956922498352330232492568382
 }, {
 "firstName" : "Phil",
 "lastName" : "Webb",
 "position" : "pitcher",
 "teamId" : 25956922498352330232492568382
 }],
 "_links" : {
 "self" : {
 "href" :
"http://localhost:8080/teams/25956922498352330232492568382"
 },
 "members" : {
 "href" :
"http://localhost:8080/teams/25956922498352330232492568382/mem
bers"
 }
 }
 }]
 }
}

This shows us the Spring Boot Badgers, which we saw previously. Apart from
having different IDs, what is different in the preceding printout? Take a look:

In the previous version of our app, members was only listed underneath
_links. In this situation, not only is there a link but we also see our
teammates being displayed directly.
We can see the new teamId property for each teammate. It matches the
enclosing team's id.

Now, let's look directly at the list of teammates, as follows:

$ curl localhost:8080/teammates
{

 "_embedded" : {
 "teammates" : [{
 "firstName" : "Greg",
 "lastName" : "Turnquist",
 "position" : "2nd base",
 "teamId" : 25956922498352330232492568382,
 "_links" : {
 "self" : {
 "href" :
"http://localhost:8080/teammates/25956922498352330232492568383"

 }
 }
 }, {
 "firstName" : "Roy",
 "lastName" : "Clarkson",
 "position" : "1st base",
 "teamId" : 25956922498352330232492568382,
 "_links" : {
 "self" : {
 "href" :
"http://localhost:8080/teammates/25956922498352330232492568384"

 }
 }
 }, {
 "firstName" : "Phil",
 "lastName" : "Webb",
 "position" : "pitcher",
 "teamId" : 25956922498352330232492568382,
 "_links" : {
 "self" : {
 "href" :
"http://localhost:8080/teammates/25956922498352330232492568385"

 }
 }
 }]
 }
}

This output is very similar to the previous output, except that it also lists
relevant links for each teammate. A key difference between our MongoDB

version and the JPA-based version is that there is no official link to the team.
We can see teamId, but it requires semantic knowledge of the domain classes.

Note

Does managing teamId without a corresponding hypermedia link violate the
principles of REST? Arguably so. However, given MongoDB's lack of
normalized relationships, it's a compromise that can be deemed suitable, given
the chance that MongoDB might be a faster, more scalable solution for certain
problems.

All the other RESTful operations work as before, so we won't repeat them
here. This should show us how easy it is to decouple our app from the
underlying datastore.

Summary
In this chapter, we created an app to manage teams and teammates. We
preloaded it with one team and three players and stored it in a relational, in-
memory database. This was good for development purposes. Then, we created
a separate profile targeting production and pointed our app towards a
standalone MySQL database. With this profile, we disabled schema creation
and data loading, leaving the production database intact. Finally, we switched
our database to the NoSQL datastore MongoDB.

For reasons of space, we used Spring Data REST instead of creating a web
frontend. It provided us with a powerful, hypermedia-driven way to interact
with the content. We mentioned how this API combined with CujoJS's REST
library can very easily be used to build a web page in lieu of server-side
templates.

In the next chapter, we will examine how to secure a Spring Boot application
quickly, customizing and overriding Boot's opinion as required.

Chapter 5. Securing Your App with
Spring Boot
"The real benefit of Boot, however, is that it's just Spring. That means any direction the code takes,
regardless of complexity, I know it's a safe bet. I don't worry about my code scaling. Boot allows the
developer to peel back the layers and customize when it's appropriate while keeping the conventions
that just work."

--Jeff Taggart

In the previous chapter, we learned how to access different data stores using
Spring Boot. We also figured out how to configure different profiles so that we
develop against one system while maintaining another.

In this chapter, we will be:

Creating a teammate management app
Adding Spring Security and seeing how Spring Boot automatically locks
down all HTTP endpoints
Configuring different levels of protection for different endpoints
Plugging in a prebuilt set of user accounts
Configuring the authentication manager to use a persistent database for
user data storage
Configuring the embedded Tomcat servlet engine to use SSL

Getting started
We are going to start this chapter by creating a fully functional Spring MVC
app that is used to manage a roster of teammates. This is very similar to the
app we built in Chapter 4, Data Access with Spring Boot, but it is simplified a
bit. Then we will apply security settings.

First of all, we need to set up a Gradle project. Using http://start.spring.io (or
working on our own), we can construct the following build.gradle file:

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath("org.springframework.boot:spring-boot-
gradle-plugin:1.1.6.RELEASE")
 }
}

apply plugin: 'java'
apply plugin: 'spring-boot'

jar {
 baseName = 'teams'
 version = '0.0.1-SNAPSHOT'
}
sourceCompatibility = 1.8
targetCompatibility = 1.8

repositories {
 mavenCentral()
}

dependencies {
 compile("org.springframework.boot:spring-boot-starter-
thymeleaf")
 compile("org.springframework.boot:spring-boot-starter-
data-jpa")
 compile("org.springframework.hateoas:spring-hateoas")
 compile("com.h2database:h2")

http://start.spring.io

}
task wrapper(type: Wrapper) {
 gradleVersion = '2.1'
}

Let's review some key settings listed here:

The preceding file uses spring-boot-gradle-plugin so that we can
build, package, and run Spring Boot apps
The project is configured to use Java 8 for both source input and target
output
It includes support for the Gradle wrapper

The included dependencies are as follows:

Dependency Description

spring-boot-starter-
thymeleaf

Pulls in Spring MVC, Thymeleaf template engine, Jackson 2 JSON support,
and embedded Tomcat

spring-boot-starter-
data-jpa

Spring Data JPA

spring-hateoas Spring HATEOAS for hypermedia links

h2 H2 in-memory database

With this in place, we are ready to craft our teammate app.

Defining our domain
Let's bring in the domain model from the previous chapter but with a slight
alteration. Let's define a single teammate:

package learningspringboot;

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;

@Entity
public class Teammate {

 @Id @GeneratedValue private Long id;

 private String firstName;
 private String lastName;
 private String position;

 protected Teammate() {}

 public Teammate(String firstName, String lastName) {
 this();
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public Long getId() {
 return id;
 }

 public void setId(Long id) { this.id = id; }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {

 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getPosition() {
 return position;
 }

 public void setPosition(String position) {
 this.position = position;
 }

 @Override
 public String toString() {
 return id + ": " + firstName + " " + lastName + " is
playing " + position;
 }
}

Let break down this domain object:

Each player has firstName, lastName, and position.
The publicly visible constructor requires a first and last name. This
implies that the position isn't required to define a teammate.
Each field has a getter and a setter as well.
We had to provide an empty, default constructor that supports
conventional JPA requirements. We set its visibility to protected in order
to discourage developers from using it directly.
There is a custom toString method to print out a player and their
position on the team.

Note

Chapter 4, Data Access with Spring Boot, had a two-table structure. This
chapter has trimmed things back to a single table in order to lighten the
controllers and templates required to build a fully functioning web app.
This way, we can spend more time focused on security-specific details.

This nice little one-table JPA structure provides a simple problem space for
this chapter: managing teammates. The most effective way for our app to
interact with this table is using the full force of Spring Data JPA
(http://projects.spring.io/spring-data-jpa). To do this, we need to create a
repository interface for Teammate:

package learningspringboot;

import org.springframework.data.repository.CrudRepository;

public interface TeammateRepository extends
CrudRepository<Teammate, Long> {}

The preceding interface might appear empty, but the inherited methods inside
CrudRepository provide the core CRUD operations we need, including
save, findOne, findAll, delete, exists, and count. The interface is
generically typed to match up with the domain class and the ID's field type.

With this code in place, when Spring Boot creates an application context,
Spring Data JPA will scan and discover our repository definition. Then it will
automatically generate a concrete proxy that implements this interface. This
saves us the labor of writing all these queries. For more details about this
process, reread Chapter 4, Data Access with Spring Boot.

http://projects.spring.io/spring-data-jpa

Loading the test data
With this repository, we are now ready to preload some teammate data. To do
this, let's create a database-loading service:

package learningspringboot;

import javax.annotation.PostConstruct;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

@Service
public class DatabaseLoader {

 private final TeammateRepository teammateRepository;

 @Autowired
 public DatabaseLoader(TeammateRepository
teammateRepository) {
 this.teammateRepository = teammateRepository;
 }

 @PostConstruct
 private void initDatabase() {
 Teammate roy = new Teammate("Roy", "Clarkson");
 roy.setPosition("1st base");
 teammateRepository.save(roy);

 Teammate phil = new Teammate("Phil", "Webb");
 phil.setPosition("pitcher");
 teammateRepository.save(phil);

 }
}

Let's look into the database loader class:

The DatabaseLoader class is annotated at the class level with
@Service, which means that it will be automatically picked up and
instantiated by Spring.
It uses constructor injection and autowiring to load a copy of Spring Data

JPA's concrete implementation of TeammateRepository.
The @PostConstruct annotation tells Spring to invoke initDatabase
after all beans have been created. This will conveniently use the Spring
Data repository to load up two players.

Note

Preloading data is only for development and demo purposes. This type of code
should not be used in a real production app. Even though this chapter will
define a production environment, it is still just a demo in this book.

Creating a server-side controller
Next, we need to create the Spring MVC web layer:

package learningspringboot;

import static
org.springframework.hateoas.mvc.ControllerLinkBuilder.*;

import java.util.Arrays;
import java.util.stream.StreamSupport;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.ModelAttribute;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.servlet.ModelAndView;

@Controller
public class TeammateController {

 private final TeammateRepository teammateRepository;

 @Autowired
 public TeammateController(TeammateRepository
teammateRepository) {
 this.teammateRepository = teammateRepository;
 }

 @RequestMapping(value = "teammates", method =
RequestMethod.GET)
 public ModelAndView getTeammates() {
 / Specify the view name
 return new ModelAndView("teammates")
 // Look up ALL teammates and wrap each with
related links
 .addObject("teammates",

StreamSupport.stream(teammateRepository.findAll().spliterator(
), false)
 .map(TeammateAndLink::new)

 .toArray())
 // new Teammate command object
 .addObject("teammate", new Teammate())
 .addObject("postLink",

linkTo(methodOn(TeammateController.class).newTeammate(null))
 .withRel("Create"))
 .addObject("links", Arrays.asList(

linkTo(methodOn(TeammateController.class).getTeammates())
 .withRel("All Teammates")
));
 }

 @RequestMapping(value = "teammates", method =
RequestMethod.POST)
 public ModelAndView newTeammate(@ModelAttribute Teammate
teammate) {
 / Save the newly created teammate
 teammateRepository.save(teammate);
 // Return the All Teammates page
 return getTeammates();
 }

 @RequestMapping(value = "teammate{id}", method =
RequestMethod.GET)
 public ModelAndView getTeammate(@PathVariable Long id) {
 // Look up the related teammate
 final Teammate teammate =
teammateRepository.findOne(id);
 return new ModelAndView("teammate")
 .addObject("teammate", teammate)
 .addObject("links", Arrays.asList(

linkTo(methodOn(TeammateController.class).getTeammates())
 .withRel("All Teammates"),

linkTo(methodOn(TeammateController.class).editTeammate(id))
 .withRel("Edit")
));
 }

 @RequestMapping(value = "teammate{id}", method =
RequestMethod.PUT)
 public ModelAndView updateTeammate(@PathVariable Long id,

 @ModelAttribute Teammate
teammate) {
 // Connect the new teammate info with the PUT {id}
 teammate.setId(id);
 teammateRepository.save(teammate);
 // Return the teammate view
 return getTeammate(teammate.getId());
 }

 @RequestMapping(value = "teammate{id}/edit", method =
RequestMethod.GET)
 public ModelAndView editTeammate(@PathVariable Long id) {
 final Teammate teammate =
teammateRepository.findOne(id);
 return new ModelAndView("edit")
 .addObject("teammate", teammate)
 .addObject("putLink",

linkTo(methodOn(TeammateController.class).updateTeammate(id,
teammate))
 .withRel("Update"))
 .addObject("links", Arrays.asList(

linkTo(methodOn(TeammateController.class).getTeammate(id))
 .withRel("Cancel")
));
 }

}

There is a quite a bit of power packed into this single controller class. Let's
look into it:

The entire class is marked with @Controller. This ensures that the class
is automatically loaded into the application context and is also used by
Spring MVC for web requests.
Once again, we use constructor injection and autowiring to ensure that the
controller has a copy of TeammateRepository.
Each method has a similar pattern. A @RequestMapping annotation
defines the route and HTTP verb it responds to. The return type is
ModelAndView, which contains the name of the view as well as
parameters for the view template.

This Spring MVC controller responds to several GET calls, a POST call that
creates a new teammate, and a PUT call that updates an existing one. The key
is that each page yields not only some information, such as teammate info, but
also includes relevant links.

Note

This controller does have a class called TeammateAndLink. If you have been
coding step by step, you are probably getting a compiler error. The purpose of
this class will be shown right after the upcoming table.

To provide proper links, this app uses Spring HATEOAS
(http://projects.spring.io/spring-hateoas).

Note

HATEOAS (Hypermedia As The Engine Of Application State) is part of
Roy Fielding's REST thesis. It essentially says that a RESTful API should also
include links that describe the relevant transitions for a given resource. Spring
HATEOAS makes it super simple to create links to Spring MVC controller
methods. For more details, you can read his REST thesis at
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

Now, let's break down each method of this controller with the following table:

Method HTTP
Verb Route Details

getTeammates GET /teammates

The view name is teammates. It displays all teammates
and runs through a Java 8 stream, mapping each team
into TeammateAndLink, which is described later. It also
includes an empty Teammate class to support the option to
create new teammates. It includes links to newTeammate
and getTeammates.

newTeammate POST /teammates

The @ModelAttribute annotation signals Spring MVC to
extract Teammate from the body of the POST and
marshal it for this method. It saves it using
TeammateRepository. Then it returns getTeammates.

http://projects.spring.io/spring-hateoas
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

getTeammate GET teammate{id}

The @PathVariable annotation extracts {id} from the
URL so that it can fetch a single Teammate object using
the repository. The view name is teammate. It returns the
teammate along with links to getTeammates and
editTeammate.

updateTeammate PUT teammate{id}

The @PathVariable annotation extracts {id}. The
@ModelAttribute annotation signals Spring MVC to
extract Teammate from the body of the POST and
marshal it for this method. A new Teammate object is
configured to use id and is then saved using the
repository. The freshly stored teammate is returned using
getTeammate(id).

editTeammate GET teammate{id}/edit

The @PathVariable annotation extracts {id}. The view
name is edit. It uses the repository to fetch Teammate
based on id. It embeds the object into a template
parameter. It also includes links to updateTeammate and
getTeammate.

An important concept is that when rendering a list of teammates, each
teammate entry needs its own link to its respective teammate{id} controller
method. Instead of trying to embed a link to a controller method inside the
Teammate domain object, we should create a container, which is
TeammateAndLink. The getTeammates method uses a simple Java 8
stream/map operation to iterate over the entire List<Teammate>, map each
item onto TeammateAndLink::new, and subsequently, create a
List<TeammateAndLink>, which is shown as follows:

package learningspringboot;

import static
org.springframework.hateoas.mvc.ControllerLinkBuilder.*;

import org.springframework.hateoas.Link;

public class TeammateAndLink {

 private final Teammate teammate;
 private final Link link;

 public TeammateAndLink(Teammate teammate) {
 this.teammate = teammate;
 this.link = linkTo(methodOn(TeammateController.class)
 .getTeammate(teammate.getId()))
 .withRel(teammate.getFirstName() + " " +
teammate.getLastName());
 }

 public Teammate getTeammate() {
 return teammate;
 }

 public Link getLink() {
 return link;
 }
}

This class is a container. We create an instance using a constructor call, not
setters. This means that the internal data won't change. The only way to change
the data is to create a new instance.

The constructor stores the Teammate instance in the teammate field. Then, it
creates a Link to the controller's getTeammate() method with the
teammate's id value plugged in. It also assigns the link a rel of <firstname>
<lastname>. This way, link creation is decoupled from the Teammate record
itself, granting us flexibility in changing the link structure later on.

Note

What are rels? In hypermedia, a rel or relation is the logical name associated
with the URI. The concept is that we shouldn't be tightly coupling clients to
RESTful services by hardcoding URIs into the UI. Instead, we should use rels
to interrogate the hypermedia, providing a fluid way for URIs to change
without impacting the client, if need be.

Crafting our HTML templates
With the controller defined, we can now work on the templates. We'll go
through them in the same order in which they were defined in the controller
earlier.

The first template we need is one that lists all the players on the roster. Create
src/main/resources/templates/teammates.html as follows:

<html xmlns:th="http://www.thymeleaf.org">
<head>
 <title>Learning Spring Boot - Chapter 5</title>
</head>
<body>
 <h2>All Teammates</h2>

 <li th:each="t : ${teammates}">
 <a th:href="${t.link.href}"
 th:text="${t.teammate.firstName} + ' ' +
${t.teammate.lastName} + ' plays ' + ${t.teammate.position}">

 <h2>Create a new teammate</h2>

 <form th:action="${postLink.href}" th:object="${teammate}"
method="post">
 <input type="text" th:field="{firstName}" />
 <input type="text" th:field="{lastName}" />
 <input type="text" th:field="*{position}" >
 <input type="submit" >
 </form>

 <div th:include="_links :: nav">
<body>
</html>

Let's break down this template:

The template contains a complete web page.
It has a header, which indicates that it lists All Teammates.

There is an unordered list (), which contains a Thymeleaf for-each
loop to generate a series of line items ().
Inside each line item, there is an anchor element (<a>) that points at that
row's Link.getHref() statement.
The text value of the anchor element is a concatenation of the teammate's
first name, last name, and position. Notice how the whole th:text
attribute is enclosed in double quotes, while each segment is either
${some attribute} or a raw string value wrapped in single quotes and
joined with +.
Later, there is a form (<form>) for creating a new teammate using the
teammate attribute.
At the bottom is a fragment that is used to render any and all links
supplied by the controller (which we'll explore later on in this section).

Whew! That seems like a lot, but it's a power-packed template. Don't forget
that in this template teammates is an instance of TeammateAndLink. It makes
it easy to access each individual teammate's properties and the associated link.
Did you also notice that there are no hardcoded paths to the server-side
controller? This is because we carefully embedded them as various attributes
using Spring HATEOAS.

Next, we need to code a template that inspects a single teammate at
src/main/resources/templates/teammate.html:

<html xmlns:th="http://www.thymeleaf.org">
<head>
 <title>Learning Spring Boot - Chapter 5</title>
</head>
<body>
 <h2 th:text="${teammate.firstName} + ' ' +
${teammate.lastName}" >
 <h3 th:text="'Plays ' + ${teammate.position}" >

 <div th:include="_links :: nav">
<body>
</html>

This template is a bit simpler. It shows you the person and the position he or
she plays, wrapped in level 2 and 3 header elements. It also includes the same

Thymeleaf fragment of links to be displayed at the bottom of the page.

We also need a page to edit existing players, so let's create
src/main/resources/templates/edit.html, which is shown as follows:

<html xmlns:th="http://www.thymeleaf.org">
<head>
 <title>Learning Spring Boot - Chapter 5</title>
</head>
<body>
 <h2>Edit a teammate</h2>

 <form th:action="${putLink.href}" th:object="${teammate}"
th:method="put">
 <input type="text" th:field="{firstName}" />
 <input type="text" th:field="{lastName}" />
 <input type="text" th:field="*{position}" >
 <input type="submit" >
 </form>

 <div th:include="_links :: nav">
<body>
</html>

There is a bit more complexity to this form, so let's break it down:

We use a conventional <form> element but use
th:action="${putLink.href}" to insert the URI supplied from the
controller via Spring HATEOAS.
The th:object=${teammate} attribute indicates that this is a bean-
backed form, that is, a command object and that the teammate attribute
sent over from the server is the object we intend to populate.
HTML only supports GET and POST. The form in teammates.html only
needed method="post". In order to use the HTTP verb PUT, we must use
th:method="put". Notice the th prefix. This causes Thymeleaf to add
an extra hidden parameter that Spring MVC will use to decode the method
on the server side. It's still a POST as far as HTTP is concerned, but
Spring MVC will turn it into PUT on the server.
Each of the input fields has th:field="*{attributeName}", such that
attributeName is an attribute of the teammate object.
This template also pulls in the same fragment to render links at the bottom

of the page.

These three templates define the three web pages in our app. To top things off,
we must also create the src/main/resources/templates/_links.html
Thymeleaf fragment, which is shown as follows:

<html xmlns:th="http://www.thymeleaf.org">

<div th:fragment="nav">
 <h3>Links:</h3>

 <li th:each="link : ${links}">
 <a th:href="${link.href}" th:text="${link.rel}">

</div>

</html>

This chunk of HTML isn't intended to be displayed as a whole web page.
Instead, it simply wraps everything inside an <html> element. From there,
each fragment is essentially a division element (<div>). In this case, we have a
header that shows Links: followed by an unordered list (). It then uses a
Thymeleaf for-each loop to create a separate line item (), displaying
each link's rel attribute linked to href.

This fragment provides a nice generalized way to display all links. This
allows us to contain the actual link formation inside the controller and not have
to fiddle with it in the client.

Tip

If you'll notice, the links for the forms and the fragment at the bottom are
supplied by the controller. This makes it possible for us to keep link
management inside the Java code where we can leverage Spring HATEOAS.
This way, there is only one place where we have to define a route, and that
place is inside a given @RequestMapping annotation. This way, if we rename
a method or alter its route, the compiler will detect any mistakes and
automatically adjust the generated HTML suitably.

With everything set up, we just need an Application class to launch
everything. If you used http://start.spring.io, a class has already been created
for you. Otherwise, create one as follows:

package learningspringboot;

import org.springframework.boot.SpringApplication;
import
org.springframework.boot.autoconfigure.EnableAutoConfiguration
;
import org.springframework.context.annotation.ComponentScan;

@ComponentScan
@EnableAutoConfiguration
public class Application {

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

This should be a familiar pattern by now. It has the familiar @ComponentScan
annotation so that it will find the DatabaseLoader service and the
TeammateController class. It will also automatically configure everything
thanks to @EnableAutoConfiguration.

Tip

Even though http://start.spring.io will also annotate this class with
@Configuration, it's not necessary as there are no beans defined in this class.

http://start.spring.io
http://start.spring.io

Running our unsecured application
It's important to point out that nothing has been secured yet. Instead, let's first
get familiar with our app. Time to fire things up! Take a look at this command:

$./gradlew bootRun

Tip

You might not see bootRun ever reach 100 percent and yet be reachable. This
could be a quirk in spring-boot-gradle-plugin. Don't worry about it.

Now, with our browser, let's visit the list of teams at
http://localhost:8080/teammates.

What can be seen in this snapshot of our browser? Take a look:

We see Roy and Phil listed with hyperlinks

We can enter the details of a new player
Finally, there is an All Teammates link, which is a proverbial "self" link
to the page we are viewing

Let's click on Roy and see what is displayed.

Here, we can see the details about Roy. We have links at the bottom to navigate
back to either All Teammates or Edit. Let's click on Edit and change Roy's
position.

We have the ability to edit Roy's record. We can change his name or position.
At the bottom is a link for Cancel, which essentially exits the edit page with no
changes. This screenshot shows us about to move Roy to third base. Let's click
on Submit and make it a done deal.

Roy has now been updated to play third base. Great!

So what do we have? Basically, this is a very simple way to manage a team
roster. It's not very fancy, but we have a nice, navigable domain.

Note

It's important to note that at no time did we manually concatenate strings
together to create links between objects. Instead, we let Spring HATEOAS
generate links to controller methods. We supplied them to the templates as
attributes. This means that if we go back and alter the routes in the controller,
we won't have to edit any other code for the links to continue working.

Again, it's important to recognize that this application is completely unsecured.
If it was deployed publicly, anyone could visit it and make edits to the team,
whether that was authorized or not.

So, let's dive in and apply some security using the speedy power of Spring
Boot.

Securing our app
The first step is to pull in springboot-starter-security. In our Gradle
build file, let's update the dependencies section to look like the following
code:

dependencies {
 compile("org.springframework.boot:springboot-starter-
thymeleaf")
 compile("org.springframework.boot:springboot-starter-data-
jpa")
 compile("org.springframework.boot:springboot-starter-
security")
 compile("org.springframework.hateoas:spring-hateoas")
 compile("com.h2database:h2")
}

This single line of build configuration will generate a whole host of updates
when we run the app again:

All HTTP endpoints are secured with basic authentication
(http://tools.ietf.org/html/rfc2617). The username is user and the
password is randomly generated and printed out to the console.
A collection of routes are ignored from any security checks including css,
js, images, and **/favicon.ico.
Security events are published to the Spring container regarding successful
and unsuccessful authentications and authorization requests.
Common security headers are activated, including HSTS (HTTP Strict
Transport Security), XSS (Cross-site Scripting), CSRF (Cross-site
Request Forgery), and Cache Control (to prevent users from viewing
secured data stored in the browser's cache). Note that this only works if
the certificate for your app is trusted by the browser. Self-signed
certificates won't work for this.

Here's a quick primer on some of these security headers:

Protocol Description

http://tools.ietf.org/html/rfc2617

HSTS

If you visit a particular page through SSL, the browser will remember and push you to SSL the
next time. This is good because it ensures that potentially sensitive data won't be snooped just
because the user forget to use the SSL port on subsequent visits. This is often applied when
users log in and are switched to HTTPS. Feel free to read the specification at
http://tools.ietf.org/html/rfc6797.

XSS

Cross-site Scripting is an attack vector whereby client-side code is injected to try and bypass
security controls such as access controls or same origin policies. For more details, read
http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#headers-xss-
protection. It should be emphasize that this helps but doesn't completely eliminate XSS risks. It
primarily addresses reflected XSS attacks.

CSRF

Cross-site Request Forgery is a more complex attack where a malicious site might attempt to
use validated cookies to conduct unauthorized activities. The solution is to embed a randomly
generated token value in the form. As a malicious website with a hijacked form won't know
the value, it will fail when the form is submitted. For more information, see
http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#csrf.

Cache
Control

Despite logging out of a website, it's possible that a browser will have cached sensitive data.
Spring Security embeds extra headers to avoid letting cached data linger after the user has
logged out. By the way, if you plug in your own Cache Control header settings, Spring Security
will back away and not overwrite your opinion. This comes in handy for things such as static
images, CSS, and other resources that we need to get cached.

While a randomly generated password is excellent for demonstrating security,
we often wish to switch to a custom password that won't change constantly. To
do this, we have to create src/main/resources/application.properties
as follows:

security.user.name=admin
security.user.password=learningspringboot

In this example, we also replaced the default username of user with admin.

http://tools.ietf.org/html/rfc6797
http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#headers-xss-protection
http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#csrf

Navigating with basic authentication
If we run the app again (either with ./gradlew bootRun or by running
Application.main) and visit http://localhost:8080/teammates, we can
expect to see the following output:

Enter admin/learningspringboot, and access will be granted.

Tip

Be aware that the transport layer is completely unsecured. Sending a username
or password to an HTTP endpoint does not protect us from people snooping
the network. Toward the end of this chapter, we will learn how to configure
Spring Boot's embedded Tomcat server to run with SSL.

Let's review the configuration provided by simply adding Spring Security to
the classpath:

The entire site is locked down, requiring username/password access

No authorization exists; only authentication exists
Only one account is supplied

In general, this is a handy way to demonstrate security, but it's probably not the
most preferred model of security. Others can snoop the network and detect our
password. Only having a single account, by definition, doesn't allow multiple
users to access the system without sharing an account (something that we highly
recommended you avoid).

Enhancing the security model of our
app
So far, we've used Spring Boot's default security settings. This means locking
down everything with only one account to access things. To customize things in
a better manner, we need to create a configuration class with a method using
Spring Security's AuthenticationManagerBuilder class:

package learningspringboot;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Configuration;
import org.springframework.http.HttpMethod;
import
org.springframework.security.config.annotation.authentication.
builders.AuthenticationManagerBuilder;
import
org.springframework.security.config.annotation.method.configur
ation.EnableGlobalMethodSecurity;
import
org.springframework.security.config.annotation.web.builders.Ht
tpSecurity;
import
org.springframework.security.config.annotation.web.configurati
on.WebSecurityConfigurerAdapter;

@Configuration
@EnableGlobalMethodSecurity(securedEnabled = true)
public class SecurityConfiguration extends
WebSecurityConfigurerAdapter {

 @Autowired
 public void configureAuth(AuthenticationManagerBuilder
auth)
 throws Exception {
 auth.inMemoryAuthentication()

.withUser("phil").password("webb").roles("USER").and()

.withUser("roy").password("clarkson").roles("USER", "ADMIN");
 }

 @Override
 protected void configure(HttpSecurity http) throws
Exception {
 http
 .authorizeRequests()
 .antMatchers(HttpMethod.GET,
"teammates").permitAll()
 .anyRequest().authenticated()
 .and()
 .formLogin()
 .defaultSuccessUrl("teammates")
 .and()
 .logout()
 .logoutSuccessUrl("/teammates");
 }
}

Let's break down this security configuration:

The @EnableGlobalMethodSecurity(securedEnabled = true)
annotation switches on Spring Security's method-level security features
using its native annotations. This annotation only works on a class marked
with @Configuration.
The configureAuth method is an autowired method that gives us a
handle on Spring Security's AuthenticationManagerBuilder instance.
This lets us configure Roy (ROLE_ADMIN and ROLE_USER) and Phil
(ROLE_USER) in an in-memory user list while still retaining the rest of
Spring Boot's auto-configured Spring Security beans.
By overriding WebSecurityConfigurerAdapter.configure, we are
able to define a tailored security policy. Let's explore the details of this
policy in the following paragraph.

The HttpSecurity class is a fluent API that is meant to provide a lightweight,
readable experience similar to Spring Security's older XML-based one. It
works by chaining multiple policy settings using .and().

The following table provides more details about each of these options:

Method Description

authorizeRequests()

This clause tells us about the authorization rules to be followed. In this case,
antMatcher(HttpMethod.GET, '/teammates').permitAll() says that GET
/teammates requires no authentication. The anyRequest().authenticated rule
says that any request must be authenticated. As this is after GET /teammates, it is
the catch-all security rule. See
http://docs.spring.io/springsecurity/site/docs/current/reference/htmlsingle/#authorize-
requests for more examples.

formLogin()

Turn on Spring Security's default login form. The form itself as well as a login
controller is included out of the box, which means that we don't have to create our
own. Want to write your own login form? Visit http://spring.io/guides/gs/securing-
web and you'll see how to create your own form and register it.

logout()

This defines that /logout will trip a logout action. In this situation, when someone
logs out, we are automatically redirecting them to /teammates using
logoutSuccessUrl(). Again, processing a logout request is provided out of the box
from Spring Security. We don't have to code a controller method to handle this.

We could have coded more authorization rules inside
SecurityConfiguration. However, we are using method-level security
instead. Let's see how we can do this by going back to TeammateController
and adding some security settings, which are shown as follows:

...
import static
org.springframework.hateoas.mvc.ControllerLinkBuilder.*;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.stream.StreamSupport;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.hateoas.Link;
import org.springframework.security.access.annotation.Secured;
import
org.springframework.security.core.context.SecurityContextHolde
r;
...
@Controller
public class TeammateController {
...

http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#authorize-requests
http://spring.io/guides/gs/securing-web

 @RequestMapping(value = "teammates", method =
RequestMethod.GET)
 public ModelAndView getTeammates() {
 ...
 }

 @Secured("ROLE_ADMIN")
 @RequestMapping(value = "teammates", method =
RequestMethod.POST)
 public ModelAndView newTeammate(@ModelAttribute Teammate
teammate) {
 ...
 }

 @Secured("ROLE_ADMIN")
 @RequestMapping(value = "teammate{id}", method =
RequestMethod.PUT)
 public ModelAndView updateTeammate(@PathVariable Long id,
 @ModelAttribute Teammate
teammate) {
 ...
 }

 @Secured("ROLE_ADMIN")
 @RequestMapping(value = "teammate{id}/edit", method =
RequestMethod.GET)
 public ModelAndView editTeammate(@PathVariable Long id) {
 ...
 }
}

We can quickly discern all the new security settings shown in the preceding
code:

The @Secured annotation is used to declare the role required to access a
given method
The getTeammates method is not flagged with any role. Instead, it is
covered in the security policy with antMatchers(HttpMethod.GET,
"/teammates").permitAll(). This means that no security is required to
fetch a list of teammates. (To be precise, Spring Security grants
ROLE_ANONYMOUS, and this is good enough for getTeammates.)
The newTeammate, updateTeammate, and editTeammate methods are
flagged to only accept users with ROLE_ADMIN. This ensures that the

backend is secured regardless of what HTML options are offered on the
frontend.

Note

Because method-level security is applied via a proxy, only methods
invoked externally from a class that is wired as a Spring bean are subject
to security checks. One method calling another inside the same class
won't incur any additional method checks. If you need additional checks
or have beans created outside Spring's DI container, check out
http://docs.spring.io/springsecurity/site/docs/current/reference/htmlsingle/#aspectj
to see what can be applied if you introduce AspectJ to your project.

The one method not discussed in the preceding code is getTeammate. This is
because it has a slightly different security requirement.

Our application grants the power to edit only to users with ROLE_ADMIN. In this
situation, we should only include the link to editTeammate if the user has that
role. We can't solve this with a method-level security check. Instead, we need
something different:

import static
org.springframework.hateoas.mvc.ControllerLinkBuilder.*;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.stream.StreamSupport;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.hateoas.Link;
import org.springframework.security.access.annotation.Secured;
import
org.springframework.security.core.context.SecurityContextHolde
r;
...
@Controller
public class TeammateController {
...
 @Secured("ROLE_USER")
 @RequestMapping(value = "teammate{id}", method =

http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#aspectj

RequestMethod.GET)
 public ModelAndView getTeammate(@PathVariable Long id) {
 ModelAndView modelAndView = new
ModelAndView("teammate");
 // Look up the related teammate
 final Teammate teammate =
teammateRepository.findOne(id);
 modelAndView.addObject("teammate", teammate);

 List<Link> links = new ArrayList<>();

links.add(linkTo(methodOn(TeammateController.class).getTeammat
es())
 .withRel("All Teammates"));

 if
(SecurityContextHolder.getContext().getAuthentication()
 .getAuthorities().stream().anyMatch(
 p -> p.getAuthority().equals("ROLE_ADMIN"))) {

links.add(linkTo(methodOn(TeammateController.class).editTeamma
te(id))
 .withRel("Edit"));
 }

 modelAndView.addObject("links", links);
 return modelAndView;
 }
...

The getTeammate method has the same @Secured("ROLE_USER") annotation
as getTeammates, which indicates that you don't have to be an admin to look
up a user. Toward the bottom of this method, we do look up the current user's
list of roles via
SecurityContextHolder.getContext().getAuthentication().getAuthorities()

With this list, we can use a Java 8 stream and a anyMatch(p ->
p.getAuthority().equals("ROLE_ADMIN")) lambda expression to see
whether the user has ROLE_ADMIN. If so, add the link to editTeammate.

Note

It's possible to replace

SecurityContextHolder.getContext().getAuthentication() with
something lighter. We can, instead, add Authentication auth as another
argument to our Spring MVC method. Spring MVC will automatically supply
this parameter, slimming down our code. The trade-off is that it will ripple
through several of the other Spring MVC methods in our controller. Either
option is fine. The choice for this book was governed by space limitations.

Regarding securing our whole application, we aren't quite done. So far, we
have secured the backend. Our current templates will properly deny access if
the user clicks on links they aren't authorized to use. However, a better user
experience would be to remove links the user isn't authorized to use, making
the frontend dynamically respond to the context of security.

To alter the HTML using security settings, add thymeleaf-extras-
springsecurity3 to build.gradle so that the dependencies section looks
like this:

dependencies {
 compile("org.springframework.boot:springboot-starter-
thymeleaf")
 compile("org.springframework.boot:springboot-starter-data-
jpa")
 compile("org.springframework.boot:springboot-starter-
security")
 compile("org.thymeleaf.extras:thymeleaf-extras-
springsecurity3")
 compile("org.springframework.hateoas:spring-hateoas")
 compile("com.h2database:h2")
}

This Thymeleaf plugin adds extra security-based tags to Thymeleaf's dialect. It
allows us to query various bits of a user's security context and customize the
HTML, as we'll soon see.

With that extra library added, let's add a security headline at the top of every
page. To do this, we first need to add another <div> fragment to _links.html:

<div th:fragment="security">

 <div>

 has

 <form th:action="@{/logout}" method="post">
 <input type="submit" value="Sign Out">
 <form>
 </div>
 <hr >

<div>

Let's walk through this fragment and see what it's designed to do:

Thymeleaf puts all security-based attributes inside the sec namespace.
The sec:authentication attribute is a handle on the current user's
authentication context. It's equivalent to the Java-based auth we just
used.
The sec:authentication="name" attribute retrieves the user's
principal, which is commonly referred to as their username. In this
example, the two defined users are roy and phil.
The sec:authentication="authorities" attribute retrieves the user's
list of authorities, that is, roles.
We also have a tiny form with th:action="@{/logout}" and
method="post" so that logouts are forced through CSRF handling. This
prevents malicious users from logging out users.
By wrapping both bits of security information inside elements,
we can turn this into a single line that is shown at the top.

With that in place, update edit.html, teammate.html, and teammates.html
to pull in this new fragment, as shown in the following code:

<body>
 <div th:include="_links :: security" />

With these updates plugged in, let's run the app (./gradlew bootRun) and
visit http://localhost:8080/teammates. From the get-go, we are logged
in automatically with Spring Security's anonymous filter.

Note

You aren't really logged in. Instead, this is a placeholder for being
unauthenticated . It's meant to avoid NullPointerExceptions for developers
who don't supply the proper checks.

We can see the details about the anonymous user's credentials listed at the top.
However, if we try to go any further, we will get redirected to Spring
Security's built-in login form. Log in as roy/clarkson.

We can see Roy's username and roles as well as the logout link in the
following output:

If we log out and then log back in as phil/webb, we see something different.

We can see that the new teammate form is gone. If we click on Phil Webb to
look at his details, we see the following output:

In this situation, the link to Edit is missing as well. The ultimate verification of
security is if we attempt to access a page that we know exists but clearly isn't
listed. Enter http://localhost:8080teammate2/edit in the browser's
address bar, which is the path that is used to access the edit teammate page.
You should see this:

Instead of seeing the edit page, we are redirected to an error page that displays
Access is denied. A classic 403 Forbidden page indicates that we are trying to
reach something we aren't authorized for.

Note

The page shown is a fallback error page supplied by Spring Boot. To
customize it, simply create src/main/resources/templates/error.html
for Thymeleaf, or error.ftl for Freemarker, or create a custom controller
that maps to /error and loads up a corresponding view.

We have just verified that Spring Security is applying both authentication and
authorization to our application. This is a good place to also point out how
Spring Security's default CSRF functionality is in full operation. If we look at
the HTML source of /teammates, we can see this:

<form method="post" action="http://localhost:8080/teammates">
 <input type="text" id="firstName" name="firstName"
value="" >
 <input type="text" id="lastName" name="lastName" value=""
>
 <input type="text" id="position" name="position" value=""
>
 <input type="submit" >
<input type="hidden" name="_csrf" value="f15f3bb5-ec87-447a-
972a-478ef36bd043" ><form>

The hidden _csrf value changes every session. The value supplied must match
the value being held by the server for things to work. Obviously, this works
here, because the form came from the server. If someone tried to hijack this
form and reuse it, the server side will have rolled its CSRF value to a new one
and will ultimately reject this false form.

Note

Remember, every form has this built in by default, which means login pages,
teammate editing, and adding new teammates in our app has extra protection
with no extra effort on our part.

Configuring user data to persist
So far, our configuration is quite extensive. We have created multiple accounts,
with each user possessing different roles. However, this is an in-memory
storage mechanism. To upgrade our app to support a complete production
environment, we can borrow some of the concepts visited in Chapter 4, Data
Access with Spring Boot. In that chapter we learned how to switch between an
in-memory database and a persistent one using Spring Profiles. We'll do the
same thing here and see what options Spring Security offers at the same time.

For starters, we need to add mysql-connector-java to build.gradle so
that the dependencies section looks like the following code:

dependencies {
 compile("org.springframework.boot:spring-boot-starter-
thymeleaf")
 compile("org.springframework.boot:spring-boot-starter-
data-jpa")
 compile("org.springframework.boot:spring-boot-starter-
security")
 compile("org.thymeleaf.extras:thymeleaf-extras-
springsecurity3")
 compile("org.springframework.hateoas:spring-hateoas")
 compile("com.h2database:h2")
 compile("mysql:mysql-connector-java")
}

Note

Again, spring-boot-gradle-plugin will automatically supply the version
number of this library, giving us one less thing to manage.

Now, let's assume the default profile, that is, no profile being specified, is our
development environment. By default, if Spring Boot spots H2, HSQL, or
Derby, it will automatically configure everything with a create-drop setting.
This means that it will automatically create tables as required for our teammate
data and drop them when the app shuts down.

In the previous section, we wrote

SecurityConfiguration.configureAuth() to configure Spring Security's
AuthenticationManager class with in-memory user accounts. As we are
switching to profiles, let's rewrite that method as follows:

@Autowired
public void
configureForDevelopment(AuthenticationManagerBuilder auth,
 Environment env) throws Exception {
 if (env.acceptsProfiles("!production")) {
 log.info("Setting up memory-based authentication for
dev");
 auth.inMemoryAuthentication()

.withUser("phil").password("webb").roles("USER").and()

.withUser("roy").password("clarkson").roles("USER", "ADMIN");
 }
}

This has the same core functionality as before, except that a little bit extra
functionality has been added. A Spring Environment object is autowired in
addition to the original AuthenticationManagerBuilder class. This way,
we can wrap the configuration with a profile check. The
env.acceptsProfiles("!production") check ensures that we apply this
in-memory user account setup only if we are not running the production
profile.

We also need a configuration that supports the use of the production profile.
So let's add this other method to SecurityConfiguration:

@Autowired
public void
configureForProduction(AuthenticationManagerBuilder auth,
 DataSource dataSource, Environment env) throws Exception {
 if (env.acceptsProfiles("production")) {
 log.info("Setting up JDBC-based authentication for
test database");
 auth.jdbcAuthentication().dataSource(dataSource);
 }
}

This method is autowired to receive both a DataSource object and an

Environment object in addition to the AuthenticationManagerBuilder
object. Let's break this down:

It performs the same profile check, only this time it execute the
configuration if we are running the production profile.
To perform security checks against user data stored in a relational
database, Spring Security uses JDBC, not Spring Data, to avoid adding
extra dependencies. All it needs in order to find the appropriate user
tables is DataSource.

Note

Let's stop for a second and clarify something. In the dev mode, we are
using an H2 database, as found in the build file to store teammate data.
We can configure Spring Security to use this database. We would simply
have to plug in
auth.jdbcAuthentication().dataSource(dataSource).withDefaultSchema().withUser().password().roles().and()

…. to configureForDevelopment. This setup would work identically to
a functional perspective. However, I picked
inMemoryAuthentication() to show the options that are available.
When we switch to the production mode, there is no H2 database.
Instead, we use MySQL to store everything, including teammate data and
user data.

The rest of our SecurityConfiguration class is the same. This alone should
demonstrate that the source of user data is independent of the security settings
applied to the application.

You might be wondering why no user/password/role settings exist in
configureForProduction. This is because we are using MySQL. Spring
Security comes with a built-in users.ddl script that is used to configure some
tables if you apply .withDefaultSchema() to jdbcAuthentication().
However, the dialect this script is written in doesn't work with MySQL. It's
designed to support in-memory databases such as H2 and not persistent ones
such as MySQL. As we are trying to preload data for a production setup, we
can simply write our own SQL script to accommodate things.

We need to declare the tables in order to store users and authorities inside
src/main/resources/schema-mysql.sql:

drop table if exists authorities;

drop table if exists users;

create table users (
 username varchar(50) not null primary key,
 password varchar(500) not null,
 enabled boolean not null);

create table authorities (
 username varchar(50) not null,
 authority varchar(50) not null,
 constraint fk_authorities_users foreign key(username)
 references users(username));

create unique index ix_auth_username on authorities
(username,authority);

Let's describe what's happening:

Upon startup, the existing security-based tables are dropped if they exist.
The users table contains username, password, and enabled.
The authorities table contains a foreign key back to users.username.
It also has an individual authority parameter, which is the same thing as
a role.
It also creates an index on authorities.

Again, I must stress that we are demonstrating the MySQL configuration but
using this demo app to populate the content. In production, the user content
would be managed by external means either through a controlled script or with
a security ops user management tool that manages the user tables.

Note

This structure assumes the same as the defaults we have already seen in this
chapter. But what if you need Spring Security to map onto a different, already
existing schema? You can also configure custom SQL methods with
usersByUsernameQuery(), authoritiesByUsernameQuery(),

groupAuthoritiesByUsername(), and rolePrefix(). These extra
configurations should support just about any setup. For more details, see
JdbcUserDetailsManagerConfigurer

(http://docs.spring.io/springsecurity/site/docs/current/apidocs/org/springframework/security/config/annotation/authentication/configurers/provisioning/JdbcUserDetailsManagerConfigurer.html

Next, we have to load some users and authorities. To do this, let's create
src/main/resources/data-mysql.sql as shown:

insert into users
(username, password, enabled)
values
('roy', 'spring-android', true);

insert into users
(username, password, enabled)
values
('phil', 'spring-boot', true);

insert into authorities
(username, authority)
values
('roy', 'ROLE_USER');

insert into authorities
(username, authority)
values
('roy', 'ROLE_ADMIN');

insert into authorities
(username, authority)
values
('phil', 'ROLE_USER');

What can we see?

We have the same two users: roy and phil. However, the passwords
have been changed from the dev profile, so we can clearly see which set
of users are active.
The user roy has two authorities: ROLE_USER and ROLE_ADMIN.
The user phil has one authority: ROLE_USER.

So, what does it take to load these two scripts? Again, Chapter 4, Data Access

http://docs.spring.io/spring-security/site/docs/current/apidocs/org/springframework/security/config/annotation/authentication/configurers/provisioning/JdbcUserDetailsManagerConfigurer.html

with Spring Boot, explains that Spring Boot will load schema-
${platform}.sql and data-${platform}.sql files automatically using the
Spring JDBC support. The only thing we need to do is declare the
${platform} property and tie it to the production profile. To do this, we
simply have to create src/main/resources/application-
production.properties as follows:

spring.jpa.hibernate.ddl-auto=update

spring.datasource.platform=mysql
spring.datasource.url=jdbc:mysql://localhost/test
spring.datasource.username=your-username
spring.datasource.password=your-password
spring.datasource.driverClassName=com.mysql.jdbc.Driver

Spring Boot only loads this property file when
SPRING_PROFILES_ACTIVE=production is defined. What all is there in this
file? Take a look:

First of all, we have it configured with the update mode, which means
that it will create all the tables as required. This applies both to user
tables and the teammate table.
It also defines platform as mysql, which is the value required to load
schema-mysql.sql and data-mysql.sql.
Finally, it includes connection information in order to access our MySQL
database.

Note

You must include the proper URL, username, and password information to
connect to your own MySQL database.

A side effect of using a persistent database instead of H2 is that data, well,
persists! If we kept running this app over and over to test out various features,
our DatabaseLoader class will keep adding the same initial set of teammates
repeatedly. If we make a slight alteration, as follows, this issue can be
avoided:

@PostConstruct
private void initDatabase() {

 teammateRepository.deleteAll();

 Teammate roy = new Teammate("Roy", "Clarkson");
 roy.setPosition("1st base");
 teammateRepository.save(roy);

 Teammate phil = new Teammate("Phil", "Webb");
 phil.setPosition("pitcher");
 teammateRepository.save(phil);
}

The preceding file contains one extra line of code:
teammateRepository.deleteAll().

Note

The deleteAll method is something that should probably never be used in
real production code. However, when it comes to setting up a demonstration,
it's great at cleaning out old data in order to prep for new data. In truth, the
entire DatabaseLoader service should probably be wrapped with
@Profile("!production") to avoid autoloading any data when this app is
run in production. It has simply been left intact here to allow us to demonstrate
MySQL support.

Configuring embedded Tomcat to
use SSL
So far, we have built up an application with method-level security, alternate
profiles of dev and production configuration, and wired up a MySQL server
with Spring Security data loaded through Spring Boot scripts. The final touch
to make our application secure from end to end would be to switch on SSL in
the embedded Tomcat server.

Security is a multilevel process. Protecting assets with username password
role controls is inadequate if anyone can snoop the network and steal
credentials. Let's see how to prevent this.

The following class, SecureTomcatConfiguration, shows us how to create
two Tomcat connectors. One is for unsecured HTTP on port 8080, and the
other is for secured HTTPS on port 8443:

package learningspringboot;

import java.io.FileNotFoundException;

import org.apache.catalina.connector.Connector;
import org.apache.coyote.http11.Http11NioProtocol;
import org.springframework.boot.context.embedded.*;
import org.springframework.boot.context.embedded.tomcat.*;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.util.ResourceUtils;

@Configuration
public class SecureTomcatConfiguration {

 @Bean
 public EmbeddedServletContainerFactory servletContainer()
 throws FileNotFoundException {
 TomcatEmbeddedServletContainerFactory f =
 new TomcatEmbeddedServletContainerFactory();
 f.addAdditionalTomcatConnectors(createSslConnector());
 return f;

 }

 private Connector createSslConnector() throws
FileNotFoundException {
 Connector connector = new
Connector(Http11NioProtocol.class.getName());
 Http11NioProtocol protocol =

(Http11NioProtocol)connector.getProtocolHandler();
 connector.setPort(8443);
 connector.setSecure(true);
 connector.setScheme("https");
 protocol.setSSLEnabled(true);
 protocol.setKeyAlias("learningspringboot");
 protocol.setKeystorePass("password");
 protocol.setKeystoreFile(ResourceUtils
 .getFile("src/main/resources/tomcat.keystore")
 .getAbsolutePath());
 protocol.setSslProtocol("TLS");
 return connector;
 }

}

Let's break down this configuration:

The new TomcatEmbeddedServletContainerFactory()expression
creates the default Spring Boot embedded Tomcat container. This runs
with the standard 8080 port and service unsecured content over HTTP.
The addAdditionalTomcatConnectors(createSslConnector())
expression adds another Tomcat connector. In this case, it delegates to a
private method that is used to declare a secured one on port 8443 over
HTTPS.

The details of the secured connector are shown in the following table:

Method Description

setPort(8443) Sets the secured port to 8443

setSecure(true) Secures the connection

setScheme("https") Sets expected URI prefix to "https"

setSSLEnabled(true) Turns on SSL for this connector

setKeyAlias("learningspringboot")
Specifies the key's username, used
when looking in the keystore file

setKeystorePass("password")
Specifies the key's password inside the
keystore file

setKeystoreFile("src/main/resources/tomcat.keystore")

Provides a path to the keystore file
where the certificate that encrypts
packets is to be found

setSslProtocol("TLS")

Use the industry standard TLS/SSL
combination of security encryption to
secure traffic

We're not done until we create a certificate that Tomcat can use to sign,
authenticate, encrypt, and decrypt with. TLS/SSL is based on X.509
certificates, and this requires that we create a keystore file. Assuming that we
have a shell open in the same folder as build.gradle, we can do this by
typing the following:

$ keytool -genkey -alias learningspringboot -keyalg RSA -
keystore src/main/resources/tomcat.keystore
Enter keystore password: password
Re-enter new password: password
What is your first and last name?
 [Unknown]: Learning Spring Boot
What is the name of your organizational unit?
 [Unknown]: Packt
What is the name of your organization?
 [Unknown]: Packt
What is the name of your City or Locality?
 [Unknown]: IoT
What is the name of your State or Province?
 [Unknown]: Earth
What is the two-letter country code for this unit?

 [Unknown]: US
Is CN=Learning Spring Boot, OU=Packt, O=Packt, L=IoT,
ST=Earth, C=US correct?
 [no]: yes

Enter key password for <learningspringboot>
 (RETURN if same as keystore password): <RETURN>

What is happening?

-genkey: This asks keytool to create a new public/private key.
-alias learningspringboot: This is our username and should line up
with setKeyAlias. A keystore can have more than one alias, but we only
need one in this situation.
-keyalg RSA: This is the algorithm that is used to generate the
public/private key.
-keystore …: This is the path to store our new key. We are embedding
this keystore inside the application for use at runtime.

Note

keytool is a command-line tool provided by the JDK. It's available on any
platform where you have installed Java for development purposes.
keytool can also be used to import keys generated elsewhere. For
example, it's possible to purchase a certified key from many ISP or DNS
providers and import it into your application's keystore.

Tip

Do not publish, release, or otherwise disclose this keystore to the public.
It contains the private key used by our application. While the key is
password-protected, a brute force attack can result in a complete breach
of security. Do not use the key aliases and key passwords shown in this
book. Use a strong, cryptographically secure password generator and
don't forget to lock up these files against outside access. We are showing
you the keystore pass inside the code, but as was shown throughout this
book, you can inject it via @Value() annotations to keep it out of your
source code.

We are almost done. The last step is to tune our security policy such that any
and all requests to the site are redirected to a secure channel:

@Override
protected void configure(HttpSecurity http) throws Exception {
 http
 .authorizeRequests()
 .antMatchers(HttpMethod.GET,
"teammates").permitAll()
 .anyRequest().authenticated()
 .and()
 .requiresChannel()
 .anyRequest().requiresSecure()
 .and()
 .formLogin()
 .defaultSuccessUrl("teammates")
 .and()
 .logout()
 .logoutSuccessUrl("/teammates");
}

So, what's different? We added
requiresChannel().anyRequest().requiresSecure() to force any and
all traffic to be redirected over a secure channel.

Note

By default, Spring Security redirects traffic from port 80 to port 443, and port
8080 to port 8443. For any other port configurations, you will have to add
portMapper().http(/unsecured port/).mapsTo(/secured port/) into
the chain of configuration shown.

With this all this in place, let's start things up and see what happens! Just type
./gradlew bootRun. After the lengthy start up sequence, we should see
something like this at the end:

2014-08-25 11:33:29.728 ... : Tomcat started on port(s):
8080/http 8443/https

This indicates that the application is listening on both 8080 (unsecured HTTP)
as well as 8443 (secured HTTPS).

Note

What about hosting my embedded Tomcat server behind a secured Apache web
server with SSL termination? This is a popular configuration where the app
itself doesn't need SSL, but the environment (PaaS or any other) does offer
SSL. Spring Boot comes with built-in support for traditional HTTP headers x-
forwarded-for and x-forwarded-proto. You simply have to add
server.tomcat.remote_ip_header=x-forwarded-for and
server.tomcat.protocol_header=x-forwarded-proto to
application.properties. See
http://docs.spring.io/springboot/docs/1.1.6.RELEASE/reference/htmlsingle/#howto-
enable-https for more details.

http://docs.spring.io/spring-boot/docs/1.1.6.RELEASE/reference/htmlsingle/#howto-enable-https

Spring Security's default web-level
protections
Remember how we earlier mentioned the extra security headers that Spring
Security provides? Let's pause for a moment and check them out from the
command line using curl:

$ curl -i localhost:8080/teammates
HTTP/1.1 302 Found
Server: Apache-Coyote/1.1
Location: https://localhost:8443/teammates
Content-Length: 0
Date: Wed, 27 Aug 2014 01:17:02 GMT

From this, we can see a 302 redirect to the secured SSL address,
https://localhost:8443/teammates. Let's follow that and try again:

$ curl -i -k https://localhost:8443/teammates
HTTP/1.1 302 Found
Server: Apache-Coyote/1.1
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
Strict-Transport-Security: max-age=31536000 ;
includeSubDomains
X-Frame-Options: DENY
Set-Cookie: JSESSIONID=2DF972B5847F02C6A90778FE12A8619D;
Path=/; Secure; HttpOnly
Location: https://localhost:8443/login
Content-Length: 0
Date: Wed, 27 Aug 2014 01:17:43 GMT

This time, we added -k to avoid certificate verification, as it's self-signed.
Several things are supplied by Spring Security by default, and they are shown
as follows:

X-Content-Type-Options: nosniff: This is a header that is used to

tell the browser to avoid sniffing MIME types when none is provided.
This prevents people from hiding malicious JavaScript inside seemingly
harmless files such as a PostScript document.
X-XSS-Protection: 1; mode=block: This signals the browser to block
anything that appears to be a reflected XSS attack.
Cache-Control: no-cache…, Pragma: no-cache, and Expires:

0: This instructs the browser to clear out and not cache secured content,
preventing a follow-up user from accessing a previous user's secured
content from the browser's cache.
Strict-Transport-Security: This helps protect us from cases where
people enter a website's URL but leave out https, opening the door to
potential man-in-the-middle attacks. HSTS headers direct the browser to
assume that after visiting a site's HTTPS URL, all future visits to this site
will assume the same. It's important to remember that HSTS only works if
the browser trusts the app's certificate. This means that self-signed
certificates (like the one we set up) won't work.
X-Frame-Options: DENY: This tells the browser to not allow our
website to be hosted inside a frame. This mitigates the risk of
clickjacking (https://www.owasp.org/index.php/Clickjacking) where a
user might click on something that is not a secured asset.

Spring Security does a good job of providing support for highly adopted
security standards.

https://www.owasp.org/index.php/Clickjacking

Navigating our fully secured app
Let's see what happens if we enter the unsecured
http://localhost:8080/teammates address into the browser's navigation
bar.

The application has automatically redirected us to
https://localhost:8443/teammates. Let's proceed to log in as Roy.

We can now see that the application itself is serving everything over SSL.

Note

We created a self-signed certificate. It is highly likely that you will see a
warning page the first time you visit this site. You must pick either Proceed
Anyway (or the equivalent for your browser) or run the site with a certificate
purchased from a vendor instead.

With all of this, our application is now strongly secured using widely
accepted, standardized security headers. We are running it in dev mode, but we
can easily switch over to the production mode and expect the same results
but with a different set of users.

Summary
In this chapter, we created a functional website in order to manage a team
roster. Then we added Spring Security and configured a policy of form
authentication, role authorization, and method-level security. We configured
two different profiles, one for dev and one for production, so that we could
work with two different sets of users. Finally, we figured out how to create our
own certificate and configure an SSL-based embedded Tomcat servlet
container. We tuned Spring Security to force all traffic to go over the secured
connection.

This is just the beginning. We didn't have room to learn about Spring Boot's
support for things such as AMQP, WebSocket, Spring Batch, AOP, Project
Reactor, and more. Hopefully, I've whetted your appetite to go out and
discover what else Spring Boot has to offer.

Index
A

-alias learningspringboot / Configuring embedded Tomcat to use SSL
@Autowired TeammateRepository teammateRepository

about / Defining entities and repositories
access

restricting, to JMX / Restricting access only to JMX
activemq / Creating custom CRaSH commands
ActiveMQAutoConfiguration

about / Auto-configuring ActiveMQ
Actuator module

about / Writing a custom health check to ping ActiveMQ
Agent Sniffer

URL / Adding server-side mobile support with Spring Mobile
API endpoint

URL / Deploying to Cloud Foundry
app

creating, H2 in-memory database used / Creating an app using H2's
in-memory database

application
bundling up, as runnable JAR / Bundling up the application as a
runnable JAR
connecting to, via JConsole and jmxterm / Connecting to the app via
JConsole and jmxterm

artifact ID
about / Getting started

auto-configuration classes
ActiveMQAutoConfiguration / Using Spring Boot's auto-
configuration report
ActiveMQAutoConfiguration.EmbeddedBroker / Using Spring
Boot's auto-configuration report
JmsAutoConfiguration / Using Spring Boot's auto-configuration
report
JmsAutoConfiguration#jmsTemplate / Using Spring Boot's auto-

configuration report
autoconfig command / Detailed management with CRaSH

B
basic authentication

navigating with / Navigating with basic authentication
Bower

using / Using Bower instead of WebJars
URL / Using Bower instead of WebJars

bower
URL / Creating a mobile frontend with jQuery Mobile

C
@Command annotation / Creating custom CRaSH commands
@ComponentScan / Running a Spring Boot application

about / Creating a JMS-based publisher/subscriber app, Defining
entities and repositories

@ConditionalOnBean
about / Creating a JMS-based publisher/subscriber app

@ConditionOnClass
about / Creating a JMS-based publisher/subscriber app

@Configuration
about / Creating a JMS-based publisher/subscriber app, Defining
entities and repositories

@Controller annotation / Adding support for templates
Cache control

about / Securing our app
clickjacking

URL / Spring Security's default web-level protections
Cloud Foundry

deploying to / Deploying to Cloud Foundry
URL / Deploying to Cloud Foundry

Command Line Interface (CLI) tool
about / Getting started

components
reconfiguring, for Spring Data MongoDB / Reconfiguring our app to
use Spring Data MongoDB

ConnectionFactory instance
about / Writing a custom health check to ping ActiveMQ

constructor injection / Creating a GitHub access token
CORS

reference link, for configuration / What about an app that is all
frontend with no backend?

counters / Gathering metrics
CRaSH

URL / Adding production-ready support features, Creating custom

CRaSH commands
used, for detailed management / Detailed management with CRaSH

CRaSH commands
reference link / Detailed management with CRaSH

CrudRepository class
methods / Defining entities and repositories
count() method / Defining entities and repositories
delete(ID id) method / Defining entities and repositories
delete(Iterable<? extends T> entities) method / Defining entities and
repositories
delete(T entity) method / Defining entities and repositories
deleteAll() method / Defining entities and repositories
exists(ID id) method / Defining entities and repositories
findAll() method / Defining entities and repositories
findOne(ID id) method / Defining entities and repositories
save(Iterable<S> entites) method / Defining entities and repositories
save(S entity) method / Defining entities and repositories

CSRF (Cross-site Request Forgery)
about / Securing our app

custom CRaSH commands
creating / Creating custom CRaSH commands

custom health check
writing / Writing a custom health check to ping ActiveMQ

customized app data
adding, to info Adding customized app data to /info

custom metrics
creating, for tracking message traffic / Creating custom metrics to
track the message traffic

D
--debug Verbose mode

about / Installing Spring Boot's CLI
-d command

about / Installing Spring Boot's CLI
@DBRef annotation / Reconfiguring our app to use Spring Data
MongoDB
@Document annotation / Reconfiguring our app to use Spring Data
MongoDB
dashboard command / Detailed management with CRaSH
data

loading, SQL script used / Loading data using a SQL script
loading programmatically / Loading data programmatically

DatabaseLoader class / Loading the test data
default web-level protections

about / Spring Security's default web-level protections
deleteAll method

about / Configuring user data to persist
dependencies

springboot-starter-thymeleaf / Getting started
springboot-starter-data-jpa / Getting started
spring-hateoas / Getting started
h2 / Getting started

domain model
defining / Defining our domain

E
@EnableAutoConfiguration / Running a Spring Boot application

about / Creating a JMS-based publisher/subscriber app, Defining
entities and repositories

@EnableAutoConfiguration annotation / Getting started
@EnableConfigurationProperties

about / Creating a JMS-based publisher/subscriber app
@EnableGlobalMethodSecurity(securedEnabled = true) annotation /
Enhancing the security model of our app
@EnableScheduling

about / Creating a JMS-based publisher/subscriber app
editTeammate method / Creating a server-side controller
EmbeddedBroker class

about / Making a change and debugging the results
embedded Tomcat

configuring / Configuring embedded Tomcat to use SSL
empty project

creating, with start.spring.io / Creating an empty project with
start.spring.io

entities
defining / Defining entities and repositories

F
403 Forbidden / Enhancing the security model of our app

G
-genkey / Configuring embedded Tomcat to use SSL
@Grab annotation / Getting started, Adding support for templates
gauges / Gathering metrics
getTeammate method / Creating a server-side controller
getTeammates method / Creating a server-side controller
GitHub

URL / Creating a GitHub access token
GitHub access token

creating / Creating a GitHub access token
GitHub issues

fetching / Digging into GitHub issues
GPars

about / Adding production-ready support
URL / Adding production-ready support

grab command
about / Installing Spring Boot's CLI

gradle
URL / Creating a GitHub access token

gradle-git
URL / Adding customized app data to /info

Gradle project
URL / Getting started

gradlew / Creating a GitHub access token
gradle wrapper

about / Creating a GitHub access token
Groovy's JsonSlurper

reference link / Gathering metrics
Groovy's power assertions

reference link / Testing with Spring Boot's CLI
groovy-templates package

about / Getting started
Groovy enVironment Manager (GVM)

URL / Installing Spring Boot's CLI

Groovy Grape
URL / Getting started

group ID
about / Getting started

H
H2 in-memory database

used, for creating app / Creating an app using H2's in-memory
database
URL / Creating an app using H2's in-memory database

HAL document
_embedded / Adding Spring Data REST and using it to manage
teammates
teams / Adding Spring Data REST and using it to manage teammates
name / Adding Spring Data REST and using it to manage teammates
_links / Adding Spring Data REST and using it to manage teammates
self / Adding Spring Data REST and using it to manage teammates
members / Adding Spring Data REST and using it to manage
teammates

HAL specification
reference link / Adding Spring Data REST and using it to manage
teammates

HATEOAS
about / Adding Spring Data REST and using it to manage teammates,
Creating a server-side controller

help command / Detailed management with CRaSH
Homebrew

URL / Installing Spring Boot's CLI, Deploying to Cloud Foundry
HSTS (HTTP Strict Transport Security)

about / Securing our app
HTML templates

crafting / Crafting our HTML templates
HTTP endpoints

/autoconfig / Adding production-ready support features
/beans / Adding production-ready support features
/configprops / Adding production-ready support features
/dump / Adding production-ready support features
/env / Adding production-ready support features
/health / Adding production-ready support features

info Adding production-ready support features
/metrics / Adding production-ready support features
/mappings / Adding production-ready support features
/trace / Adding production-ready support features

HttpSecurity class
about / Enhancing the security model of our app
authorizeRequests() method / Enhancing the security model of our
app
formLogin() method / Enhancing the security model of our app
logout() method / Enhancing the security model of our app

J
jar command

about / Installing Spring Boot's CLI
JConsole

launching / Connecting to the app via JConsole and jmxterm
JMS-based publisher/subscriber app

creating / Creating a JMS-based publisher/subscriber app
jmsTemplate method

about / Overriding Boot with alternate beans or properties
JMX

access, restricting to / Restricting access only to JMX
jmxterm

reference link / Connecting to the app via JConsole and jmxterm
JpaRepository interface / Defining entities and repositories
jQuery Mobile

used, for creating mobile frontend / Creating a mobile frontend with
jQuery Mobile
about / Creating a mobile frontend with jQuery Mobile
URL / Creating a mobile frontend with jQuery Mobile

JSONView
about / Gathering metrics

K
-keyalg RSA / Configuring embedded Tomcat to use SSL
-keystore … / Configuring embedded Tomcat to use SSL
keytool

about / Configuring embedded Tomcat to use SSL

L
logback

about / Loading data using a SQL script

M
@Man annotation / Creating custom CRaSH commands
management endpoints

tweaking / Tweaking management ports, address, and paths
message-driven POJO

about / Creating a JMS-based publisher/subscriber app
MessageListenerAdapter class

about / Creating a JMS-based publisher/subscriber app
metrics command / Creating custom CRaSH commands
mobile frontend

creating, with jQuery Mobile / Creating a mobile frontend with
jQuery Mobile

ModelAndView class / Adding support for templates
MongoDB

download link / Reconfiguring our app to use Spring Data MongoDB
MongoDB-based app

running / Running our MongoDB-based app
MySQL database

production profile, adding for / Adding a production profile for a
MySQL database

N
negative matches

about / Using Spring Boot's auto-configuration report
newTeammate method / Creating a server-side controller
null / Adding Spring Data REST and using it to manage teammates

P
@PostConstruct annotation / Loading the test data
@Profile annotation

about / Adding a production profile for a MySQL database
PATCH / Adding Spring Data REST and using it to manage teammates
ping command / Creating custom CRaSH commands
pivotal/tap

reference link / Installing Spring Boot's CLI
Pivotal Web Services

URL / Deploying to Cloud Foundry
positive matches

about / Using Spring Boot's auto-configuration report
production-ready support

adding / Adding production-ready support
production-ready support features, adding to app

about / Adding production-ready support features
app, pinging for general health / Pinging our app for general health
metrics, gathering / Gathering metrics
detailed management, with CRaSH / Detailed management with
CRaSH

production environment / Loading the test data
production profile

adding, for MySQL database / Adding a production profile for a
MySQL database

public static void main() / Running a Spring Boot application
PUT / Adding Spring Data REST and using it to manage teammates

Q
queues

about / Overriding Boot with alternate beans or properties

R
@RequestMapping / Adding support for templates
@RequestMapping annotation / Getting started
@RequestParam annotation / Adding support for templates
@RestController annotation / Getting started
rels (relationships)

about / Adding Spring Data REST and using it to manage teammates
repositories

defining / Defining entities and repositories
RESTful services

requisites / Adding Spring Data REST and using it to manage
teammates

run command
about / Installing Spring Boot's CLI

S
@Secured annotation / Enhancing the security model of our app
secured app

navigating / Navigating our fully secured app
secured connector

methods / Configuring embedded Tomcat to use SSL
security headers

HSTS protocol / Securing our app
XSS protocol / Securing our app
CSRF protocol / Securing our app
Cache control protocol / Securing our app

security model, of app
enhancing / Enhancing the security model of our app

seeTheRoster method
about / Defining entities and repositories

server-side controller
creating / Creating a server-side controller

server-side mobile support
adding, with Spring Mobile / Adding server-side mobile support
with Spring Mobile

shell command
about / Installing Spring Boot's CLI

SimpleMessageListenerContainer class
about / Creating a JMS-based publisher/subscriber app

Spock
about / Testing with Spring Boot's CLI
reference link / Testing with Spring Boot's CLI

Spring's DI container
reference link / Enhancing the security model of our app

Spring-a-Gram
URL / Adding Spring Data REST and using it to manage teammates

springboot-maven-plugin
URL / Creating a GitHub access token

springboot-starter

about / Spring Boot starters
springboot-starter-thymeleaf

URL / Spring Boot starters
springboot-starter-web

about / Spring Boot starters
springboot-starter-web package

about / Getting started
spring-core

about / Spring Boot starters
spring-jms / Running a Spring Boot application
SpringApplication.run() method / Getting started
Spring Boot

about / Getting started
Groovy, using / Getting started
using / Getting started
overriding, with alternate beans or properties / Overriding Boot
with alternate beans or properties

Spring Boot's property support
delving into / Delving into Spring Boot's property support

Spring Boot application
bundling / Bundling and deploying a Spring Boot application
deploying / Bundling and deploying a Spring Boot application
modernizing, with JavaScript / Modernizing our app with JavaScript
Bower, using / Using Bower instead of WebJars
single page frontend, building / What about an app that is all frontend
with no backend?
production-ready support features, adding / Adding production-
ready support features
running / Running a Spring Boot application

Spring Boot auto-configuration report
using / Using Spring Boot's auto-configuration report
ActiveMQ, auto-configuring / Auto-configuring ActiveMQ
modifying / Making a change and debugging the results
results, debugging / Making a change and debugging the results

Spring Boot CLI
reference link / Getting started

installing / Installing Spring Boot's CLI
testing with / Testing with Spring Boot's CLI

Spring Boot starters
about / Spring Boot starters

Spring Data JPA
URL / Creating an app using H2's in-memory database, Defining our
domain

Spring Data REST
adding / Adding Spring Data REST and using it to manage
teammates
using / Adding Spring Data REST and using it to manage teammates
reference link / Adding Spring Data REST and using it to manage
teammates

Spring Framework
URL / Spring Boot starters

Spring HATEOAS
reference link / Creating a server-side controller

Spring IO
URL / Spring Boot starters

Spring Mobile
used, for adding server-side mobile support / Adding server-side
mobile support with Spring Mobile
URL / Adding server-side mobile support with Spring Mobile

Spring profiles
about / Adding a production profile for a MySQL database

Spring Security
about / Getting started
key settings / Getting started
dependencies / Getting started
default web-level protections / Spring Security's default web-level
protections

Spring Social GitHub
adding / Adding Spring Social GitHub

spring test command
about / Testing with Spring Boot's CLI

spring tool

about / Getting started
Spring XD

about / Gathering metrics
SQL script

used, for data loading / Loading data using a SQL script
start.spring.io

used, for creating empty project / Creating an empty project with
start.spring.io
URL / Creating an empty project with start.spring.io
reference link / Creating an empty project with start.spring.io

T
teammate management app

domain, defining / Defining our domain
test data, loading / Loading the test data
server-side controller, creating / Creating a server-side controller
HTML templates, crafting / Crafting our HTML templates
unsecured application, running / Running our unsecured application
securing / Securing our app
basic authentication, navigating / Navigating with basic
authentication
security model, enhancing / Enhancing the security model of our app
user data, configuring / Configuring user data to persist
embedded Tomcat, configuring / Configuring embedded Tomcat to
use SSL
secured app, navigating / Navigating our fully secured app

templates
support, adding / Adding support for templates

test command
about / Installing Spring Boot's CLI

test data
loading / Loading the test data

Thymeleaf
about / Adding support for templates, Creating an empty project with
start.spring.io
URL / Adding support for templates

thymeleaf-layout-dialect
about / Spring Boot starters

thymeleaf-spring4
about / Spring Boot starters

topics
about / Overriding Boot with alternate beans or properties

U
@Usage annotation / Creating custom CRaSH commands
unsecured application

running / Running our unsecured application
updateTeammate method / Creating a server-side controller
user data

configuring / Configuring user data to persist

W
WebJars project

URL / Modernizing our app with JavaScript

X
x-forwarded-for / Configuring embedded Tomcat to use SSL
x-forwarded-proto / Configuring embedded Tomcat to use SSL
XSS (Cross-site Scripting)

about / Securing our app

	Learning Spring Boot
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Quick Start with Groovy
	Getting started
	Installing Spring Boot's CLI
	Testing with Spring Boot's CLI
	Bundling and deploying a Spring Boot application
	Adding support for templates
	Modernizing our app with JavaScript
	Using Bower instead of WebJars
	What about an app that is all frontend with no backend?
	Adding production-ready support features
	Pinging our app for general health
	Gathering metrics
	Detailed management with CRaSH
	Summary
	2. Quick Start with Java
	Creating an empty project with start.spring.io
	Spring Boot starters
	Running a Spring Boot application
	Adding Spring Social GitHub
	Digging into GitHub issues
	Creating a GitHub access token
	Delving into Spring Boot's property support
	Adding server-side mobile support with Spring Mobile
	Creating a mobile frontend with jQuery Mobile
	Bundling up the application as a runnable JAR
	Deploying to Cloud Foundry
	Adding production-ready support
	Summary
	3. Debugging and Managing Your App
	Creating a JMS-based publisher/subscriber app
	Using Spring Boot's auto-configuration report
	Auto-configuring ActiveMQ
	Making a change and debugging the results
	Overriding Boot with alternate beans or properties
	Writing a custom health check to ping ActiveMQ
	Adding customized app data to /info
	Creating custom metrics to track the message traffic
	Tweaking management ports, address, and paths
	Restricting access only to JMX
	Connecting to the app via JConsole and jmxterm
	Creating custom CRaSH commands
	Summary
	4. Data Access with Spring Boot
	Creating an app using H2's in-memory database
	Defining entities and repositories
	Loading data using a SQL script
	Loading data programmatically
	Adding a production profile for a MySQL database
	Adding Spring Data REST and using it to manage teammates
	Reconfiguring our app to use Spring Data MongoDB
	Running our MongoDB-based app
	Summary
	5. Securing Your App with Spring Boot
	Getting started
	Defining our domain
	Loading the test data
	Creating a server-side controller
	Crafting our HTML templates
	Running our unsecured application
	Securing our app
	Navigating with basic authentication
	Enhancing the security model of our app
	Configuring user data to persist
	Configuring embedded Tomcat to use SSL
	Spring Security's default web-level protections
	Navigating our fully secured app
	Summary
	Index

